Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света Страница 9

Тут можно читать бесплатно Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света» бесплатно полную версию:
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна. Эта книга — способ совершить математическое путешествие вокруг света и узнать много нового о культурах разных народов.

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света читать онлайн бесплатно

Микель Альберти - Мир математики. т 40. Математическая планета. Путешествие вокруг света - читать книгу онлайн бесплатно, автор Микель Альберти

Запишем первые 10 натуральных чисел в виде сумм степеней двойки, чтобы вы могли увидеть закономерность, которой они подчиняются.

Древние египтяне выполняли деление по схожему алгоритму, но в обратном порядке, то есть с помощью умножения. К примеру, при делении 92 на 9 они определяли число, на которое нужно умножить 9, чтобы получить 92. Сначала необходимо составить таблицу чисел. В левом столбце запишем последовательность степеней двойки, в правом столбце будем раз за разом удваивать 9, пока оно не превысит 92.

Теперь выберем из правого столбца числа, которые в сумме дают 92. Так как выбрать такие числа нельзя, 92 не делится на 9 нацело. Ближайшая сумма равна 18 + 72 = 90. Следовательно, результат деления равен 2 + 8 = 10 (сумме степеней двойки, соответствующих числам 18 и 72), остаток от деления равен 2.

Счет в разных регионах

Для счета необходимо дать величинам названия, а также предусмотреть символы для их обозначения. Сегодня символы, обозначающие цифры, являются практически универсальными и используются во всех уголках планеты. Названия чисел и слова, используемые при счете, также эквивалентны. Однако даже самый точный перевод не всегда может обеспечить соответствие исходных понятий.

Двести лет назад многие европейцы думали, что африканцы способны считать разве что до 10. Эту точку зрения опровергли некоторые торговцы XVIII века и исследователи-антропологи в XX столетии.

Можно было подумать, что народ кпелле, живший в центральной Либерии и Гвинее, не умел обращаться с числами только потому, что использовал для выполнения арифметических действий кучки камней. Однако в результате исследования, которое провели Гэй и Коул, оказалось, что кпелле точнее оценивают число камней в кучках разных размеров, чем студенты Йельского университета.

* * *

ЖЕСТЫ ДЛЯ ОБОЗНАЧЕНИЯ ЧИСЕЛ В АФРИКЕ

Зулусы — самый многочисленный народ Южной Африки. Они проживают преимущественно в Южноафриканской Республике, а отдельные группы зулусов встречаются в Зимбабве, Замбии и Мозамбике. Камба — язык семейства банту, на котором говорит народ камба, живущий в Восточной Африке, в частности в Кении и Танзании. В следующей таблице приведены жесты, которыми камба и зулусы обозначают числа от 1 до 10.

Число · Зулусы (Южная Африка) · Камба (Кения)

1 · Вытянутый левый мизинец · Вытянутый правый указательный палец

2 · Вытянутый мизинец и средний палец на левой руке · Вытянутый указательный и средний палец на правой руке

3 · Вытянутые мизинец, безымянный и средний пальцы · Вытянутые указательный, средний и безымянный пальцы правой руки

4 · Четыре вытянутых пальца · Пары «указательный — средний» и «безымянный — мизинец» правой руки, сложенные в виде буквы V

5 · Пять вытянутых пальцев · Пальцы правой руки, сложенные в кулак

6 · Вытянутый большой палец правой руки · Взяться за левый мизинец правой рукой

7 · Вытянутый большой и указательный палец правой руки · Взяться за мизинец и безымянный палец левой руки правой рукой

8 · Три вытянутых пальца правой руки · Взяться за мизинец, безымянный и средний палец левой руки правой рукой

9 · Четыре вытянутых пальца правой руки · Взяться правой рукой за четыре пальца левой руки

10 · Вытянуть все пальцы · Сжать в кулаки пальцы обеих рук

* * *

Для счета и вычислений мы используем десятичную систему счисления, которую выражаем устно и письменно. В нашем обществе взрослый человек, который считает на пальцах, вызывает удивление — так могут делать только дети в младших классах.

Мы записываем и произносим числа при помощи символов и слов, в которых также отражается десятичное основание нашей системы счисления. Все числа от 1 до 10 обозначаются разными символами и словами. Звучание чисел, больших 10, определяют фонетические корни. Например, числа с 11 до 19 произносятся так.

Аналогично обозначаются и последующие степени числа 10 — основания системы счисления. Первые слоги указывают, сколько степеней десятки нужно выбрать: тридцать (30), пятьдесят (50), двести (200), триста (300), четыре тысячи (4000), сто тысяч (100000). Выражение вида «семь тысяч триста пятьдесят два» неявно подразумевает представление исходной величины в виде суммы степеней 10:

7·1000 + 3·100 + 5·10 + 2.

Однако в рамках западной культуры имеются некоторые различия. Французы при устном счете для обозначения десятков от 60 до 90 используют в качестве основы число 20. Восемьдесят на французском произносится quatre-vingt, то есть «четыре раза по двадцать». Восемьдесят пять произносится quatre-vingt cinq, то есть

4·20 + 5.

Клаудия Заславски (1917–2006, Нью-Йорк) первой изучила туземные математические идеи и внесла вклад в создание этноматематики. В труде «Africa Counts» («Африка считает») она предвосхитила идеи, которые спустя много лет составили основу отдельной дисциплины — этноматематики (это название ей дал бразильский профессор Убиратан д’Амброзио). Заславски зафиксировала множество математических идей, свойственных африканским культурам: системы счисления, отличные от десятичной, методы счета на пальцах, геометрические узоры, используемые в строительстве и украшениях.

За пределами западной культуры при обозначении величин, которые нельзя показать на пальцах одной руки, в устной речи за основу берется число 5. В некоторых разновидностях языка банту (Центральная Африка) корень, обозначающий число 5, звучит как «тано» и входит в слова, обозначающие 6, 7, 8 и 9. Эти слова образуются прибавлением к корню «тано», обозначающему пять единиц, окончаний 1 (-мве), 2 (-вали), 3 (-тату) и 4 (-не). Таким образом, 6 называется тано-на-мве, 7 — тано-на-вали, 8 — тано-на-тату, 9 — тано-на-не.

В Гвинее-Бисау и Центральной Африке также используются пятеричные и двадцатеричные системы счисления, в которых 5 понимается как число пальцев на руке, 20 — число пальцев на руках и ногах. Таким образом, 10 называется «две руки», а 20 — «человек». Выражение «пять человек» обозначает число 100.

Традиционные обозначения чисел отражают мышление народа. Однако такие обозначения удобны при подсчете малых величин, но не при действиях с большими числами. Так, народ игбо, живущий на территории Нигерии, использует систему счисления по основанию 20. Квадрат 20 обозначается словом нну, квадрат 400 называется «нну кхуру нну», что означает «400 встречает 400».

Числа имеют первостепенное значение и в торговле, где нужно уметь измерять и взвешивать, производить расчеты и вести записи. Торговля невозможна без обмена и единицы стоимости. Так возникает необходимость в умножении и делении.

В Африке в качестве денежных единиц использовались раковины, коровы, соль, рабы и золото. Сегодня главная роль отводится банкнотам и монетам, хотя на местных рынках практикуется и натуральный обмен товарами.

Сто лет назад народ эве с побережья Гвинеи использовал в торговле раковины каури. Сорок раковин составляли единицу товарного обмена и назывались хока. Вдали от побережья хока равнялась уже не 40, а 35 раковинам. Эве быстро и умело перемножали числа: так, они брали 20 раз по 3 раковины, затем добавляли к ним 10 и получали 2 материковых хока: 20·3 + 10 = 70.

Значит ли это, что эве находили соотношение между береговой и материковой хока? Учитывая, что 20 — половина от 40, а 10 — четвертая часть 40, знали ли они, что три половины и четвертая часть береговой хока равнялись двум материковым хока? Более того, понимали ли они, что отношение между этими «валютами» равнялось 8:7 и, чтобы перевести цену из береговых в материковые хока, нужно было умножить ее на 7 и разделить на 8? Ответить на этот вопрос нелегко.

Система счисления народа йоруба (Нигерия)

Особого упоминания заслуживает удивительно сложная система счисления народа йоруба, живущего на территории Нигерии. Так, число 48 на языке йоруба дословно означает 20·3 — 10 — 2.

Йоруба используют двадцатеричную систему счисления, однако в отличие от подавляющего большинства культур числа в ней определяются вычитанием, а не сложением. Система счисления йоруба может показаться необычной и слишком сложной, однако это не единственная система счисления, основанная на вычитании — по такому же принципу была устроена римская система.

Как представить число в системе йоруба? Чтобы ответить на этот вопрос, сначала рассмотрим обозначения всех чисел до 20 — основания этой системы счисления. Числа от 1 до 10 обозначаются разными словами. Числа от 11 до 14 образуются прибавлением окончания — лаа к словам, обозначающим числа от 1 до 4. Вычитание используется начиная с числа 15: это и последующие числа обозначаются словами, которые буквально означают 20 — 5, 20 — 4, 20 — 3, 20 — 2 и 20 — 1. Число 20 обозначается новым словом; следующие числа, начиная с 21, обозначаются при помощи сложения, затем, начиная с 25, — вновь при помощи вычитания. Это правило циклически повторяется для всех последующих чисел. К примеру, 105 = 6·20–10 — 5, 315 = 400 — 20·4–5 (число 400 имеет особое название).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.