Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Страница 24

Тут можно читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» бесплатно полную версию:
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. читать онлайн бесплатно

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно, автор Джон Дербишир

14 ноября 1852. <…> Вечер среды я провел у Дирихле: снова встретил миссис Дирихле и узнал, что она — сестра Мендельсона; она сыграла мне несколько пьес своего брата, которые я слушал с большой охотой.

20 февраля 1853. <…> У Дирихле свои причуды, одна из которых — забывать о времени. Он вытаскивает свои часы, выясняет, что уже четвертый час, и убегает, даже не закончив фразы.

VIII.

Определяющая роль Дирихле в том, что относится к нашему рассказу, состоит в следующем. Вдохновленный результатом, доказанным Эйлером ровно за сто лет до того, — результатом, который я отныне буду называть Золотым Ключом, — Дирихле в 1837 году свел вместе идеи из анализа и арифметики для доказательства важного результата о простых числах. Этот момент многими рассматривается как начало аналитической теории чисел — арифметики с пределами. Открывшая новые горизонты работа Дирихле называлась, уж извините, Beweis des Satzes, doss jede unbegrenzte arithmetische Progression, deren erstes Gleid und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sindf unendlich viele Primzahlen enthält — «Доказательство теоремы о том, что каждая неограниченная арифметическая прогрессия, первый член и разность которой являются целыми числами без общего делителя, содержит бесконечно много простых чисел».

Возьмем любые два целых числа и будем последовательно прибавлять одно к другому. Если наши два числа имеют общий делитель, то каждое из получающихся чисел тоже будет иметь этот делитель: например, последовательное прибавление числа 6 к 15 даст числа 15, 21, 27, 33, 39, 45, …, каждое из которых делится на тройку. Но если два исходных числа не имеют общего делителя, то в получающемся списке могут попадаться и простые числа. Например, будем последовательно прибавлять 6 к 35: получим 35, 41, 47, 53, 59, 65, 71, 77, 83, …, где масса простых (вперемешку, разумеется, с массой не простых, таких как 65 или 77). А как много простых? Может ли такая последовательность содержать бесконечно много простых чисел? Другими словами, может ли случиться так, что для любого сколь угодно большого числа N нам удастся получить более чем N простых чисел, достаточно долго прибавляя для этого 6 к 35? А может ли любая подобная последовательность, построенная из двух чисел без общего делителя, содержать бесконечно много простых чисел?

Да. Может. И именно так дело и обстоит. Возьмем любые два числа без общего делителя и будем последовательно прибавлять одно к другому. Получим бесконечно много простых чисел (наряду с бесконечно большим количеством не простых). Гаусс высказал предположение, что так должно быть, — зная мощь Гаусса, хочется сказать, что он это чувствовал интуитивно, — но твердо доказал это Дирихле в той работе 1837 года. Именно в доказательстве, которое привел Дирихле, реализовалась первая часть того самого великого соединения.

На самом деле все даже еще интереснее. Возьмем любое положительное целое число, скажем, 9. Как много чисел, меньших, чем 9, не имеют общего делителя с девяткой (единица не считается за делитель)? Таких чисел шесть — это 1, 2, 4, 5, 7, 8. Будем по очереди брать каждое из них и последовательно прибавлять к нему девятку.

1: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127…2: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128…4: 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130…5: 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131…7: 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133…8: 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134…

Каждая из этих шести последовательностей содержит не просто бесконечно много простых чисел (выделены жирным), но и одну и ту же долю простых чисел. Другими словами, представим себе, что последовательности продолжены до окрестности какого-то очень большого числа N, а не просто до окрестности числа 134; тогда каждая последовательность будет содержать примерно одно и то же количество простых чисел, причем если верна Теорема о распределении простых чисел, то около 1/6(N∙ln N) (впрочем, эта теорема еще не была доказана во времена Дирихле). Если N — это 134, то 1/6(N∙ln N) составляет около 4,55983336…. Приведенные выше шесть последовательностей содержат 5, 5, 4, 5, 4 и 5 простых чисел, что дает среднее 4,6666… — на 2,3 процента больше, чем утверждается, что совсем неплохо для такой маленькой выборки.

Для доказательства своего результата Дирихле начал с арифметики в той форме, в какой она была подробно развита Гауссом в Disquisitiones Arithmeticae. Математики называют ее «арифметикой сравнений». Ее можно представлять себе как арифметику циферблата. Временно заменим 12 на циферблате часов на 0. Двенадцать часовых отметок на циферблате теперь имеют вид 0, 1, 2, 3, …, 11. Если времени сейчас восемь часов, а вы прибавите 9 часов, то что получится? Ага, вы получите пять часов. В данной арифметике, таким образом, 8 + 9 ≡ 5. Или, как это выражают математики, 8 + 9 ≡ 5 (mod 12), что читается как «девять плюс восемь сравнимо с пятью по модулю 12». Фраза «по модулю двенадцати» означает «я определяю результаты по циферблату с 12 часовыми отметками, от 0 до 11». Это может показаться тривиальным, но в действительности арифметика сравнений уходит очень глубоко и полна странных и трудных результатов. Гаусс был в ней великим гроссмейстером; ни одна из семи глав Disquisitiones Arithmeticae не обходится без знака ≡.

Не забудем, что Disquisitiones была постоянным спутником Дирихле в его молодые годы. Когда он приступил к упомянутой выше задаче в 1836 или 1837 году, ему было уже тридцать с небольшим лет, и к тому времени он не раз уже проштудировал работу Гаусса по сравнениям. Затем каким-то образом в поле его зрения попал результат Эйлера 1737 года — Золотой Ключ. Это и дало ему подсказку. Он соединил две вещи вместе, применил некоторые элементарные методы анализа и получил свое доказательство.

IX.

Дирихле, таким образом, был первым, кто подобрал Золотой Ключ — связующее звено между арифметикой и анализом — и всерьез воспользовался им. Однако (если продолжить ту аналогию, которую я здесь развиваю) утверждение о том, что он еще и повернул ключ, было бы некоторым преувеличением. Скорее я бы сказал, что он его взял, оценил его красоту и потенциальную мощь, затем отложил его в сторону, но использовал как образец для другого похожего ключа — серебряного, можно сказать, — чтобы отпереть дверь, ведущую к стоявшей перед ним конкретной проблеме. Великое соединение — аналитическая теория чисел — появилось во всем своем великолепии лишь 22 года спустя, в работе Римана 1859 года.

Вспомним, однако, что Риман был одним из учеников Дирихле и, без сомнения, знал о его работах. Действительно, в первом же абзаце своей статьи 1859 года он упоминает Дирихле вместе с Гауссом. Они были двумя его математическими кумирами. Если Риман повернул ключ, то Дирихле сначала показал ему этот ключ и продемонстрировал, что он в самом деле может что-то отпереть; и именно Дирихле заслуженно принадлежит бессмертная слава создания аналитической теории чисел.

Но что же представляет собой этот Золотой Ключ? Что именно оставил Леонард Эйлер, работая в своей комнате наедине со свечой, когда по улицам Санкт-Петербурга пробирались тайные агенты Бирона, что именно оставил он — для того чтобы через сто лет это нашел Дирихле?

Глава 7. Золотой Ключ и улучшенная Теорема о распределении простых чисел

I.

Внимательный читатель уже, должно быть, заметил, что математические главы этой книги развиваются по двум основным колеям. Главы 1 и 5 были целиком посвящены различным бесконечным рядам, приводящим к математическим объектам, которые Риман назвал дзета-функцией. А в главе 3, посвященной простым числам, отталкиваясь от заглавия работы Римана 1859 года, мы рассмотрели Теорему о распределении простых чисел (ТРПЧ). Эти два предмета — дзета-функция и простые числа, — очевидно, связны в силу того интереса, который к ним проявлял Риман. В самом деле, определенным образом связав одну концепцию с другой и повернув Золотой Ключ, Риман открыл целую область аналитической теории чисел. Но как он это сделал? Какова связь? Что именно представляет собой Золотой Ключ? В данной главе я намерен ответить на этот вопрос — предъявить вам Золотой Ключ. После этого мы начнем готовиться к повороту Золотого Ключа, рассмотрев улучшенный вариант ТРПЧ.

II.

Начинается все с «решета Эратосфена». Золотой Ключ по существу представляет собой способ, которым Леонард Эйлер сумел выразить решето Эратосфена в терминах анализа.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.