Генри Дьюдени - Пятьсот двадцать головоломок Страница 47

Тут можно читать бесплатно Генри Дьюдени - Пятьсот двадцать головоломок. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Генри Дьюдени - Пятьсот двадцать головоломок

Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Генри Дьюдени - Пятьсот двадцать головоломок» бесплатно полную версию:
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.

Генри Дьюдени - Пятьсот двадцать головоломок читать онлайн бесплатно

Генри Дьюдени - Пятьсот двадцать головоломок - читать книгу онлайн бесплатно, автор Генри Дьюдени

310. У посылки максимальных размеров суммарная длина веревки, идущей в длину, должна быть равна суммарной длине веревки, идущей в ширину (и суммарной длине веревки, идущей в высоту). Если это известно или читатель самостоятельно разобрался и понял, в чем дело, то остальное рассчитать очень просто. Действительно, мы знаем, что веревка 2 раза проходит в длину, А в ширину и 6 раз в высоту. Следовательно, разделив 1 м 20 см соответственно на 2, 4 и 6, мы получим 60, 30 и 20 см, а это и будет искомыми длиной, шириной и высотой посылки максимального размера.

Следующее общее решение принадлежит Александеру Фрейзеру. Пусть веревка a раз проходит вдоль ребра длиной x, b раз вдоль ребра длиной y и c раз вдоль ребра длиной z, и пусть длина всей веревки равна m.

Тогда ax + by + cz = m. Найдем максимум xyz.

Прежде всего найдем максимум площади xy.

Положим ax + by = n, x = (n - by)/a, xy = (n/a)y - (b/a)y2, dxy/dy = n/a - (2b/a)y = 0, тогда

Следовательно, ax также равно n/2, ax = by. Аналогично ax = by = cz = m/3, откуда

В нашем случае a = 2, b = 4, c = 6, m = 360. Таким образом, x = 60, y = 30, z = 20:

311. Куб любого квадрата сам является квадратом. Например,

и т. д.

Нам было сказано, чтобы мы взглянули на рисунок. Если бы на возведение пьедестала израсходовали лишь один блок, то он целиком покрыл бы фундамент, а на рисунке видно, что это не так. Если бы в пьедестале и фундаменте содержалось по 64 блока, то сторона первого равнялась бы 4 м, а сторона квадрата 8 м. Достаточно беглого взгляда для того, чтобы отвергнуть и это предположение. Но предположение о пьедестале и фундаменте, состоящих из 729 блоков каждый, вполне согласуется с иллюстрацией, так как в этом случае сторона пьедестала (9 м) в три раза меньше стороны квадрата (27 м). Во всех остальных случаях фундамент оказался бы намного шире пьедестала, что противоречило бы иллюстрации.

312. Любопытный факт состоит в том, что куб может пройти сквозь другой куб с меньшим ребром. Допустим, мы расположили куб таким образом, что его диагональ AB оказалась перпендикулярной плоскости, на которой он стоит (см. рисунок слева). Тогда его проекцией будет правильный шестиугольник. На рисунке справа показана дырка, сквозь которую.может пройти куб с тем же ребром, что и у исходного. Однако легко заметить, что дырку можно немного увеличить так, чтобы сквозь нее прошел куб с большим ребром. Следовательно, я проделал дырку не в большем, как мог поспешно решить читатель, а в меньшем кубе! Поэтому больший куб, вполне очевидно, оказался тяжелее. Этого не могло бы произойти, если бы дырка была проделана в большем кубе.

313. Всего имеется 11 различных разверток, если не различать между собой две развертки, полученные одна из другой путем переворачивания. Если же наружная сторона коробки, например, голубая, а внутренняя белая и требуется уложить развертки белой стороной вверх, то это можно сделать 20 различными способами, поскольку тогда к каждой развертке, кроме случаев 1 и 5, добавится еще по одной зеркально-симметричной развертке, которая теперь уже будет отличаться от нее.

314. Крендель можно разрезать на 10 частей одним прямым разрезом вдоль линии, показанной на рисунке.

315. Отметьте середины ребер BC, CH, HE, EF, FG и GB. Затем, начиная сверху, проведите разрез вдоль плоскости, обозначенной пунктирной линией на рисунке слева. Тогда каждая из двух новых поверхностей окажется правильным шестиугольником, а правый кусок будет выглядеть примерно так, как он изображен рядом.

316. Умная муха избрала бы путь, отмеченный на рисунке справа сплошной линией, на его преодоление уйдет 2,236 мин. Путь, отмеченный пунктирной линией, длиннее, и на него уйдет больше времени.

317. Вода поднимется сначала на 15 см, а затем еще на 22,5 см.

318. Сначала отрежьте с краю кусок A толщиной 1 см. Оставшуюся часть можно затем разрезать, как показано на рисунке, на 24 части требуемого размера 5 × 3 × 2½ см. Не видны только четыре куска: два под B и два под C.

319. Объемы подобных тел относятся, как кубы длин соответственных линейных элементов. Простейший ответ состоит в том, что длины трех яиц равны соответственно 1½, 2 и 2½ дюйма. Кубы этих трех чисел равны 2⅞, 8 и , а их сумма составляет точно 27, или 33. Следующий простейший ответ есть 2⅔, 2 и ⅓ дюйма. Но вообще-то ответов существует бесконечно много.

320. Мастер сделал ящик с внутренними размерами 30 × 10 × 10 см и в него поместил подставку. Затем он наполнил ящик чистым сухим песком, как следует утряс его и выровнял верхнюю часть. Потом он вынул подставку, встряхнул оставшийся песок, выровнял его и обнаружил, что его поверхность находится ровно в 20 см от верхнего края ящика. Отсюда стало ясно, что подставка содержала 2 дм3 древесины и что был снят 1 дм3.

321. Поднимаясь на 2 м по стволу, белка совершает путь длиной 2,5 м. Следовательно, взобравшись на дерево высотой 8 м, она пройдет путь длиной 10 м.

322. Пусть диаметр сигареты равен 2 единицам, и пусть 8 рядов по 20 сигарет в каждом (см. случай A) целиком заполняют коробку. Внутренняя длина коробки в таком случае равна 40, а глубина 16 единицам. Теперь если мы поместим 20 сигарет в нижнем ряду и если вместо 20 в следующем ряду мы положим 19 штук, как показано в случае B, то сэкономим на этом 0,268 (точнее, 2 -) высоты. Этот второй ряд и каждый дополнительный ряд из 20 или 19 (по очереди) сигарет увеличивают высоту на 1,732. Следовательно, мы получим девять рядов общей высотой 2 + 8 × 1,732 = 15,856 единицы, что меньше нашей глубины, составляющей 16 единиц. Таким образом, мы увеличим число сигарет на 20 (благодаря дополнительному ряду) и уменьшим его на 4 (1 штука в каждом ряду из 19), что даст чистый прирост 16 сигарет.

323. Сделайте разрезы, как показано на рисунке, и поместите полученные части на места, указанные пунктиром. Приведенное решение не единственно.

324. На рисунке показано простейшее и, я думаю, наиболее изящное решение, связанное с разрезанием крышки стола на шесть частей. Сдвинув часть A вдоль B на одну ступеньку вверх, вы получите часть крышки стола размером 12 × 12 см. Сдвинув часть C вверх вдоль D и соединив с E, вы получите квадрат 15 × 15 см. Квадрат 16 × 16 см не разрезается.

325. Стороны новых квадратов должны быть равными 24 и 7 см. Сделайте разрезы, как показано на рисунке слева. Из «деталей» A, B и C можно составить новый квадрат (см. правую часть рисунка). Квадрат D вырезается целиком.

326. Здесь вы видите, как следует разрезать букву E на пять частей, чтобы из них можно было составить квадрат, при условии, что части нельзя переворачивать.

При условии, что части можно переворачивать, E достаточно разрезать на четыре части.

327. Разрежьте шестиугольник пополам и сложите половинки так, чтобы получилась фигура ABCD. Продолжите прямую DC до точки E так, чтобы отрезок CE был равен высоте CF. Затем, поставив одну ножку циркуля в G, опишите полуокружность DHE и проведите прямую CH перпендикулярно DE. Теперь СН является средним пропорциональным между DC и CE и, следовательно, равно стороне искомого квадрата. Из C опишите дугу HJ, а из K — полуокружность DJC. Проведите CJ и DJ. Отложите отрезок JL, равный JC, и достройте квадрат. Остальное не требует объяснений.

328. На помещенном здесь рисунке показано, как следует разрезать испорченный крест на четыре части, из которых можно составить квадрат. Надо просто продолжить каждую сторону квадратного отверстия до соответствующего угла, и все готово!

329. Из рисунка ясно, как следует разрезать крест на 7 частей, чтобы из них получился квадрат.

330. Разрежьте звезду по центру на 4 части, которые поместите по углам рамки. Просвет образует правильный мальтийский крест (см. рисунок).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.