Ричард Фейнман - 5. Электричество и магнетизм Страница 14
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 18
- Добавлено: 2019-08-13 11:13:22
Ричард Фейнман - 5. Электричество и магнетизм краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 5. Электричество и магнетизм» бесплатно полную версию:Ричард Фейнман - 5. Электричество и магнетизм читать онлайн бесплатно
Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!
*Конечно, последующие выкладки в равной мере относятся и к любому прямоугольному параллелепипеду.
Глава 4
ЭЛЕКТРОСТАТИКА
§1. Статика
§2.Закон Кулона; наложение сил
§З. Электрический потенциал
§4. E=-▽φ
§5.Поток поля Е
§6.Закон Гаусса; дивергенция поля Е
§7 .Поле заряженного шара
§8. Линии поля; эквипотенциальные поверхности
Повторишь: гл.13 и 14 (вып. 1) «Работа и потенциальная энергия»
§ 1. Статика
Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромагнетизм целиком) запрятана в уравнениях Максвелла:
Явления, описываемые этими уравнениями, могут быть очень сложными. Но прежде чем перейти к более сложным, мы начнем со сравнительно простых и сначала научимся обращаться с ними. Самым легким для изучения является случай, который называют статическим. Это случай, когда от времени ничего не зависит, когда все заряды либо намертво закреплены на своих местах, либо если уж движутся, то их ток постоянен (т. е. r и j постоянны во времени). В этих условиях в уравнениях Максвелла все члены, являющиеся производными по времени, обращаются в нуль, и уравнения приобретают следующий вид:
Магнитостатика
Обратите внимание на интересное свойство этой системы четырех уравнений. Она распалась на две части. Электрическое поле Е появляется только в первой паре уравнений, а магнитное поле В — только во второй. Между собой эти два поля совсем не связаны. Это означает, что коль скоро заряды и токи постоянны, то электричество и магнетизм — явления разные. Нельзя обнаружить никакой зависимости полей Е и В друг от друга, пока не возникают изменения в зарядах или токах, скажем, пока конденсатор не начнет заряжаться или магнит двигаться. Только когда возникают сравнительно быстрые изменения, так что временные производные в уравнениях Максвелла достигают заметной величины, Е и В начинают влиять друг на друга.
Если вы всмотритесь в уравнения статики, то обнаружите, что для изучения математических свойств векторных полей эти два предмета — электростатика и магнитостатика — являются идеальным объектом. Электростатика — это чистый пример векторного поля с нулевым ротором и заданной дивергенцией, а магнитостатика — чистейший пример поля с нулевой дивергенцией и заданным ротором. Более общепринятый (и, быть может, с чьей-то точки зрения более удовлетворительный) путь изложения теории электромагнетизма состоит в том, чтобы начать с электростатики и выучить тем самым все про дивергенцию. Магнитостатику и ротор оставляют на потом. И лишь в конце объединяют и электричество, и магнетизм. Мы же с вами начали с полной теории векторного исчисления. Применим теперь ее к частному случаю электростатики, к полю Е, задаваемому первой парой уравнений.
Начнем с самых простых задач, в которых положения всех зарядов фиксированы. Если бы нам нужно было изучить электростатику только на этом уровне (а этим мы и будем заниматься в ближайших двух главах), то жизнь наша была бы очень проста. Все было бы почти тривиальным и нам понадобился бы, как вы в этом сейчас убедитесь, только закон Кулона да несколько интегрирований. Однако во многих реальных электростатических задачах мы вначале не знаем, где находятся заряды. Мы знаем только, что они в зависимости от свойств вещества распределились как-то и где-то. Положение, которое примут заряды, зависит от поля Е, а оно в свою очередь зависит от расположения зарядов. И тогда все сразу усложняется. Если, например, заряженное тело поднесено к проводнику или к изолятору, то электроны и протоны в проводнике или изоляторе начнут перетекать на новое место. Одна часть плотности заряда r в уравнении (4.5) будет нам известна — это тот заряд, который мы подносим; но в r войдут и другие части от тех зарядов, которые перетекают. Мы обязаны будем учесть движение всех зарядов. Возникнут довольно тонкие и интересные задачи.
Однако настоящая глава, хоть она и посвящена электростатике, не будет касаться самых красивых и тонких вопросов этой науки. В ней будут рассмотрены лишь такие ситуации, в которых можно предположить, что расположение всех зарядов известно. Но и в этом случае, прежде чем научиться справляться со сложными случаями, естественно сначала освоиться с простыми.
§ 2. Закон Кулона; наложение сил
Логично было бы принять за отправную точку уравнения (4.5) и (4.6). Но легче начать с другого, а потом вернуться к этим уравнениям. Результат получится одинаковый. Мы начнем с закона, о котором говорилось раньше,— с закона Кулона, утверждающего, что между двумя покоящимися зарядами действует сила, прямо пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния между ними. Сила направлена по прямой от одного заряда к другому.
Закон Кулона
(4.9)
здесь F1 — сила, действующая на заряд q1; е12 — единичный вектор, направленный от q2к q1 , а г12— расстояние между q1 и q2. Сила F2, действующая на q2, равна и противоположна силе F1. Множитель пропорциональности по историческим причинам пишется в виде 1/4яе0. В системе единиц СИ, которой мы пользуемся, он определяется как 10-7 от квадрата скорости света. Так как скорость света примерно 3·108 м/сек, то множитель приблизительно равен 9·109, и единица оказывается равной ньютон·м2/кулон2, или вольт ·м/кулон
(4.10)
Если зарядов больше двух (а именно такие случаи наиболее интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со стороны всех прочих зарядов. Этот экспериментальный факт называется «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если добавить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).
Применяя закон Кулона, удобно ввести понятие об электрическом поле. Мы говорим, что поле Е(1) — это сила, действующая со стороны прочих зарядов на единицу заряда q1 . Деля (4.9) на q1 ,мы получаем для действия всех зарядов, кроме q1,
(4.11)
Кроме того, мы считаем, что Е(1) описывает нечто, существующее в точке (1), даже если в ней нет заряда q1(в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).
Электрическое поле Е — это вектор, так что в (4.11) на самом деле написаны три уравнения, по одному для каждой компоненты. Расписывая x-компоненту в явном виде, получаем
(4.12)
и точно так же для остальных компонент.
Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть qj— величина j-го заряда, а г1j— смещение qjот точки (1); тогда мы напишем
(4.13)
Фиг. 4.1. В точке (1) электрическое поле Е от некоторого распределения зарядов получается из интеграла по распределению.
Точка (I) может находится также внутри распределения.
что означает, конечно,
и т. д.
Часто бывает удобно игнорировать тот факт, что заряды всегда существуют в виде отдельных кусочков, таких, как электроны или протоны, а считать, что они размазаны сплошным пятном, или, как говорят, описываются «распределением». До тех пор пока нам все равно, что происходит в малых масштабах, такое описание вполне законно. Распределение заряда описывается «плотностью заряда» r (х, у, z). Если количество заряда в небольшом объеме DV2 близ точки (2) есть Dq2, то r определяется равенством
Жалоба
Напишите нам, и мы в срочном порядке примем меры.