Ричард Фейнман - 5. Электричество и магнетизм Страница 13

Тут можно читать бесплатно Ричард Фейнман - 5. Электричество и магнетизм. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 5. Электричество и магнетизм

Ричард Фейнман - 5. Электричество и магнетизм краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 5. Электричество и магнетизм» бесплатно полную версию:

Ричард Фейнман - 5. Электричество и магнетизм читать онлайн бесплатно

Ричард Фейнман - 5. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман

(3.34)

Производную при нашей точности можно брать в точке (х, у). Подобным же образом оставшиеся два члена можно написать в виде

(3.35)

и циркуляция по квадрату тогда равна

(3.36)

Интересно, что в скобках получилась как раз z-компонента ротора С. Множитель DxDy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как

(СXС)zDа.

Но z-компонента это на самом деле компонента, нормальная к элементу поверхности.

Фиг. 3.11. Циркуляция век­тора С по Г равна поверхност­ному интегралу от нормальной компоненты вектора СXС.

Поэтому циркуляцию вокруг квад­ратика можно задать и в инвариантной векторной записи:

(3.37)

В результате имеем: циркуляция произвольного вектора С по бесконечно малому квадрату равна произведению состав­ляющей ротора С, нормальной к поверхности, на площадь квад­рата.

Циркуляция по произвольному контуру Г легко теперь может быть увязана с ротором векторного поля. Натянем на кон­тур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности. Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].

ТЕОРЕМА СТОКСА

(3.38)

где S — произвольная поверхность, ограниченная контуром Г. Теперь мы должны ввести соглашение о знаках. На приведен­ной ранее фиг. 3.10 ось z показывает на вас, если система коорди­нат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора СXC. Обойди мы кон­тур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты век­тора СXC? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Об­щий случай показан на фиг. 3.11.

Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Г, чтобы кончики пальцев показывали положительное направление обхода ds, то ваш большой палец укажет направление положи­тельной нормали к поверхности S.

§ 7. Поля без роторов и поля без дивергенций

Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возь­мем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то кри­волинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали. Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользо­вались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позво­лило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функ­ции [см. вып. 1, уравнение (14.13)].

Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента неко­торой скалярной функции, т. е. если АXС=0 всюду, то существует некоторая функция y (пси), для которой С = Сy (полезное представление). Значит, мы можем, если захотим, опи­сывать этот род векторных полей при помощи скалярных полей.

Теперь докажем еще одну формулу. Пусть у нас есть про­извольное скалярное поле j (фи). Если взять его градиент Сj, то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю.

Фиг. 3.12. Если СXС равно нулю, то циркуляция по замкнутой при­вой Г тоже нуль.

Криволинейный интеграл от C·ds на участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.

Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхно­стный интеграл от (СXС)n должен обратиться в нуль.

Криволинейный интеграл от точки (1) до точки (2) равен [j(2)- j (1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:

Применяя теорему Стокса, можно заключить, что

по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,

Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.

Рассмотрим теперь частный случай, когда на маленький контур Г натягивается большая поверхность S (фиг. 3.13). Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор С повсюду конечен, то криволинейный интеграл по Г должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Г, а она убывает). Согласно теореме Стокса, поверхност­ный интеграл от (СXС)n тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в ин­теграл привносится вклад, который взаимно уничтожается с накопленным

ранее. Получается новая теорема:

Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Та­кой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к СXС утверждает, что

(3.40)

Мы заключаем, что интеграл в правой части должен обращать­ся в нуль и что это должно быть справедливо для любого векторного по­ля С, каким бы оно ни было.

(3.41)

Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подын­тегральное выражение должно быть равно нулю. Получается, что

Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прила­жено одно к другому.

§ 8. Итоги

Подытожим теперь все, что мы узнали о векторном исчисле­нии. Вот самые существенные моменты гл. 2 и 3.

1. Операторы д/дх, д/ду и д/dz можно рассматривать как три составляющих векторного оператора С; формулы, сле­дующие из векторной алгебры, остаются правильными, если этот оператор считать вектором

2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей гра­диента этого скаляра вдоль любой кривой, соединяющей пер­вую точку со второй:

(3.42)

Поверхностный интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности равен интег­ралу от дивергенции вектора по объему, лежащему внутри этой поверхности:

(3.43)

4. Криволинейный интеграл от касательной составляющей произвольного вектора по замкнутому контуру равен поверх­ностному интегралу от нормальной составляющей ротора этого вектора по произвольной поверхности, ограниченной этим кон­туром

(3.44)

От редактора. Начиная изучать уравнения Максвелла, обратите вни­мание, что в этих лекциях используется рационализированная система единиц, в которой уравнения Максвелла не содержат коэффициентов.

Более привычно вместо e0 писать e0/4p; тогда коэффициент 4p исче­зает из знаменателя закона Кулона (4.9), но появляется в правых частях уравнений (4.1) и (4.3). [Улучшение системы единиц всегда похоже на Тришкин кафтан.]

Кроме того, вместо квадрата скорости света вводят новую постоян­ную m0=e0/c2, называют ее (довольно неудачно) магнитной проницаемос­тью пустоты (так же, как e0 называют диэлектрической проницаемостью пустоты) и обозначают e0E=D, B=m0H.

Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.