Ричард Фейнман - 6. Электродинамика Страница 24
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 37
- Добавлено: 2019-08-13 11:17:25
Ричард Фейнман - 6. Электродинамика краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 6. Электродинамика» бесплатно полную версию:Ричард Фейнман - 6. Электродинамика читать онлайн бесплатно
Кроме того, я должен отметить, что самые дотошные и педантичные люди не называют S действием. Его именуют «первой главной функцией Гамильтона». Но читать лекцию о «принципе наименьшей первой главной функции Гамильтона» было свыше моих сил. Я назвал это «действием». Да к тому же все больше и больше людей называют это «действием». Видите ли, исторически действием было названо нечто другое, не столь полезное для науки, но я думаю, что разумнее изменить определение. Теперь и вы начнете именовать новую функцию действием, а вскоре и все вообще станут называть ее этим простым именем.
Теперь я хочу сообщить вам по поводу нашей темы кое-что, похожее на те рассуждения, которые я вел по поводу принципа кратчайшего времени. Существует разница в самом существе закона, утверждающего, что некоторый интеграл, взятый от одной точки до другой, имеет минимум,— закона, который сообщает нам что-то обо всем пути сразу, и закона, который говорит, что когда вы двигаетесь, то, значит, есть сила, приводящая к ускорению. Второй подход докладывает вам о каждом вашем шаге, он прослеживает ваш путь пядь за пядью, а первый выдает сразу какое-то общее утверждение обо всем пройденном пути. Толкуя о свете, мы говорили о связи этих двух подходов. Теперь я хочу объяснить вам, отчего должны существовать дифференциальные законы, если имеется такой принцип — принцип наименьшего действия. Причина вот в чем: рассмотрим действительно пройденный в пространстве и времени путь. Как и прежде, обойдемся одним измерением, так что можно будет начертить график зависимости x от t. Вдоль истинного пути S достигает минимума. Положим, что у нас есть этот путь и что он проходит через некоторую точку а пространства и времени и через другую соседнюю точку b.
Теперь, если весь интеграл от t1 до t2 достиг минимума, необходимо, чтобы интеграл вдоль маленького участочка от а до b тоже был минимальным. Не может быть, чтобы часть от а до b хоть чуточку превосходила минимум. Иначе вы могли бы подвигать туда-сюда кривую на этом участочке и снизить немного значение всего интеграла.
Значит, любая часть пути тоже должна давать минимум. И это справедливо для каких угодно маленьких долек пути. Поэтому тот принцип, что весь путь должен давать минимум, можно сформулировать, сказав, что бесконечно малая долька пути — это тоже такая кривая, на которой действие минимально. И если мы возьмем достаточно короткий отрезок пути — между очень близкими друг к другу точками а и b,— то уже неважно, как меняется потенциал от точки к точке вдали от этого места, потому что, проходя весь ваш коротенький отрезочек, вы почти не сходите с места. Единственное, что вам нужно учитывать,— это изменение первого порядка малости в потенциале. Ответ может зависеть только от производной потенциала, а не от потенциала в других местах. Так, утверждение о свойстве всего пути в целом становится утверждением о том, что происходит на коротком участке пути, т. е. дифференциальным утверждением. И эта дифференциальная формулировка включает производные от потенциала, т. е. силу в данной точке. Таково качественное объяснение связи между законом в целом и дифференциальным законом.
Когда мы говорили о свете, то обсуждали также вопрос: как все-таки частица находит правильный путь? С дифференциальной точки зрения это понять легко. В каждый момент частица испытывает ускорение и знает только то, что ей положено делать в это мгновение. Но все ваши инстинкты причин и следствий встают на дыбы, когда вы слышите, что частица «решает», какой ей выбрать путь, стремясь к минимуму действия. Уж не «обнюхивает» ли она соседние пути, прикидывая, к чему они приведут — к большему или к меньшему действию? Когда мы на пути света ставили экран так, чтобы фотоны не могли перепробовать все пути, мы выяснили, что они не могут решить, каким путем идти, и получили явление дифракции.
Но верно ли это и для механики? Правда ли, что частица не просто «идет верным путем», а пересматривает все другие мыслимые траектории? И что если, ставя преграды на ее пути, мы не дадим ей заглядывать вперед, то мы получим некий аналог явления дифракции? Самое чудесное во всем этом — то, что все действительно обстоит так. Именно это утверждают законы квантовой механики. Так что наш принцип наименьшего действия сформулирован не полностью. Он состоит не в том, что частица избирает путь наименьшего действия, а в том, что она «чует» все соседние пути и выбирает тот, вдоль которого действие минимально, и способ этого выбора сходен с тем, каким свет отбирает кратчайшее время. Вы помните, что способ, каким свет отбирает кратчайшее время, таков: если свет пойдет по пути, требующему другого времени, то придет он с другой фазой. А полная амплитуда в некоторой точке есть сумма вкладов амплитуд для всех путей, по которым свет может ее достичь. Все те пути, у которых фазы резко различаются, ничего после сложения не дают. Но если вам удалось найти всю последовательность путей, фазы которых почти одинаковы, то мелкие вклады сложатся, и в точке прибытия полная амплитуда получит заметное значение. Важнейшим путем становится тот, возле которого имеется множество близких путей, дающих ту же фазу.
В точности то же происходит и в квантовой механике. Законченная квантовая механика (нерелятивистская и пренебрегающая спином электрона) работает так: вероятность того, что частица, выйдя из точки 1 в момент t1, достигнет точки 2 в момент t2, равна квадрату амплитуды вероятности. Полная амплитуда может быть записана в виде суммы амплитуд для всех возможных путей — для любого пути прибытия. Для любого x(t), которое могло бы возникнуть для любой мыслимой воображаемой траектории, нужно подсчитать амплитуду. Затем их все нужно сложить. Что же мы примем за амплитуду вероятности некоторого пути? Наш интеграл действия говорит нам, какой обязана быть амплитуда отдельного пути. Амплитуда пропорциональна eiS/h, где S — действие на этом пути. Это значит, что если мы представим фазу амплитуды в виде комплексного числа, то фазовый угол будет равен S/h,. Действие S имеет размерность энергии на время, и у постоянной Планка размерность такая же. Это постоянная, которая определяет, когда нужна квантовая механика.
И вот как все это срабатывает. Пусть для всех путей действие S будет весьма большим по сравнению с числом h. Пусть какой-то путь привел к некоторой величине амплитуды. Фаза рядом проложенного пути окажется совершенно другой, потому что при огромном S даже незначительные изменения S резко меняют фазу (ведь h чрезвычайно мало). Значит, рядом лежащие пути при сложении обычно гасят свои вклады. И только в одной области это не так — в той, где и путь и его сосед— оба в первом приближении обладают одной и той же фазой (или, точнее, почти одним и тем же действием, меняющимся в пределах h). Только такие пути и принимаются в расчет. А в предельном случае, когда постоянная Планка h стремится к нулю, правильные квантовомеханические законы можно подытожить, сказав: «Забудьте обо всех этих амплитудах вероятностей. Частица и впрямь движется по особому пути — именно по тому, по которому S в первом приближении не меняется». Такова связь между принципом наименьшего действия и квантовой механикой. То обстоятельство, что таким способом можно сформулировать квантовую механику, было открыто в 1942 г. учеником того же самого учителя, мистера Бадера, о котором я вам рассказывал. [Первоначально квантовая механика была сформулирована при помощи дифференциального уравнения для амплитуды (Шредингер), а также при помощи некоторой матричной математики (Гейзенберг).]
Теперь я хочу потолковать о других принципах минимума в физике. Есть очень много интересных принципов такого рода. Я не буду их все перечислять, а назову еще только один. Позже, когда мы доберемся до одного физического явления, для которого существует превосходный принцип минимума, я расскажу вам о нем. А сейчас я хочу показать, что необязательно описывать электростатику при помощи дифференциального уравнения для поля; можно вместо этого потребовать, чтобы некоторый интеграл обладал максимумом или минимумом. Для начала возьмем случай, когда плотность зарядов известна повсюду, а нужно найти потенциал j в любой точке пространства. Вы уже знаете, что ответ должен быть такой:
Другой способ утверждать то же самое заключается в следующем: надо вычислить интеграл U*
Жалоба
Напишите нам, и мы в срочном порядке примем меры.