Ричард Фейнман - 4a. Кинетика. Теплота. Звук Страница 7

Тут можно читать бесплатно Ричард Фейнман - 4a. Кинетика. Теплота. Звук. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 4a. Кинетика. Теплота. Звук» бесплатно полную версию:

Ричард Фейнман - 4a. Кинетика. Теплота. Звук читать онлайн бесплатно

Ричард Фейнман - 4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записы­вается в виде f(x-vt). Посмотрим теперь, является ли f(x-vt) решением волнового уравнения. Вычисляя дc/дх, получаем производную функции dcldx=f'(x-vt). Дифференцируя еще раз, находим

Дифференцируя эту же функцию c по t, получаем значение — V, умноженное на производную, или дc/dt=-vf (x-vt); вторая производная по времени дает

Очевидно, что f(х-vt) удовлетворяет волновому уравнению, если v равно cs.

Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью csи, кроме того,

тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть, что звуковая волна может распространяться: и в направлении отрицательных х, т. е. звуковое возмущений вида c (х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распростра­нялась слева направо, заключается в знаке v, но знак д2c/dt2не зависит от выбора x+vt или х-vt, потому что в эту производ­ную входит только v2. Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью cs.

Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем c1 . Это значит, что вторая производная 3d по х равна второй производной c1 по t1, умноженной на 1/с2s. И пусть есть второе решение c2, обладаю­щее тем же свойством. Сложим эти два решения, тогда полу­чается

c (x, t)= c1(x, t) + c2(x, t). (47.17)

Теперь мы хотим удостовериться, что c (х, t) тоже представ­ляет некую волну, т. е. c тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

и вдобавок

Отсюда следует, что d2c/dx2=(l/c2s2c/dt2, так что справедли­вость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по c.

Теперь естественно было бы ожидать, что плоская световая волна, распространяющаяся вдоль оси х и поляризованная так, что электрическое поле направлено по оси y, тоже удовлет­воряет волновому уравнению

где с — скорость света. Волновое уравнение для световой волны есть одно из следствий уравнений Максвелла. Уравнения элект­родинамики приводят к волновому уравнению для света точно так же, как уравнения механики приводят к волновому урав­нению для звука.

§ 5. Скорость звука

При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с2s=(dP/dr)0. (47.21) Чтобы оценить скорость изменения давления, очень важно знать, как при этом меняется температура. Можно ожидать, что в местах сгущения звуковой волны температура повысится, а в местах разрежения — понизится. Ньютон первым вычислил скорость изменения давления с плотностью, предположив, что температура при этом не меняется. Он считал, что тепло пере­дается из одной области звуковой волны в другую так быстро, что температура измениться не успеет. Способ Ньютона дает изотермическую скорость звука, что неправильно. Правильное вычисление было сделано позже Лапласом, считавшим вопреки Ньютону, что давление и температура в звуковой волне меня­ются адиабатически. Поток тепла из области сгущения в область разрежения пренебрежимо мал, если только длина волны ве­лика по сравнению с длиной свободного пробега. При этих условиях ничтожная утечка тепла в звуковой волне не влияет на скорость звука, хотя и приводит к небольшому поглощению звуковой энергии. Мы можем, естественно, ожидать, что погло­щение тепла усилится, когда длина волны приблизится к длине свободного пробега, но такие длины волн примерно в миллион раз меньше длины волны слышимого звука.

Итак, для звука истинная скорость изменения давления с плотностью должна вычисляться без учета отвода тепла. Это соответствует адиабатическому изменению давления, для ко­торого мы нашли, что PVg=const, где V — объем. Поскольку плотность r обратно пропорциональна объему, связь P и r для адиабатических процессов дается соотношением

P=const·rg, (47.22)

откуда мы получаем dP/dr=gP/r. Тогда для скорости звука возникает соотношение

c2s =gP/r. (47.23)

Можно еще написать с2s= gPV/rV и использовать соотноше­ние PV=NkT. Мы видим, кроме того, что rV есть масса газа, которую можно записать как Nm или m, где m — масса молекулы, а m — молекулярный вес. Таким образом, находим

откуда видно, что скорость звука зависит только от темпе­ратуры газа и не зависит от давления или плотности. Мы уже отмечали, что

kT=1/3m<v2>, (47.25)

где <v2> — средняя квадратичная скорость молекул. Отсюда следует, что с2s=g/3 <v2>, или

Это равенство означает, что скорость звука есть средняя ско­рость молекул воздуха (точнее, корень квадратный из средней квадратичной скорости), умноженная на некоторое число, грубо говоря, на 1/(3)1/2. Другими словами, она того же порядка величины, что и скорость молекул, но на самом деле несколько меньше средней скорости молекул.

В общем-то мы могли этого ожидать, потому что такое воз­мущение, как изменение плотности, передается в конечном счете движением молекул. Однако подобного рода соображения не подсказывают нам точного значения скорости; могло ведь оказаться, что звук переносится самыми быстрыми или самыми медленными молекулами. Разумно и весьма утешительно, что скорость звука оказалась равной приблизительно половине средней молекулярной скорости.

* При таком выборе Pотн Р — уже не максимальная амплитуда зву­кового давления, а «среднее квадратичное» давление, равное максималь­ному, деленному на 1/Ц2.

 

 

Глава 48

БИЕНИЯ

§ 1. Сложение двух волн

§ 2. Некоторые замечания о биениях и модуляции

§ 3. Боковые полосы

§ 4. Локализован­ный волновой пакет

§ 5. Амплитуда вероятности частиц

§ 6. Волны в простран­стве трех измерений

§ 7. Собственные колебания

§ 1. Сложение двух волн

Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источников оди­наковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интер­ференции двух источников с различными ча­стотами.

Нетрудно догадаться, что при этом произой­дет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с оди­наковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.