Ричард Фейнман - 5a. Электричество и магнетизм Страница 8
- Категория: Научные и научно-популярные книги / Физика
- Автор: Ричард Фейнман
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 23
- Добавлено: 2019-08-13 11:16:49
Ричард Фейнман - 5a. Электричество и магнетизм краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Ричард Фейнман - 5a. Электричество и магнетизм» бесплатно полную версию:Ричард Фейнман - 5a. Электричество и магнетизм читать онлайн бесплатно
§ 7. Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверхности, полученные из расчетов, приведенных в гл. 5. Рассмотрим теперь эквипотенциальную поверхность А. Предположим, что мы изогнули тонкий лист металла так, что он в точности
Фиг. 6.8. Линии поля и эквипотенциальные поверхности двух точечных зарядов.
накладывается на эту поверхность. Если его действительно наложить и установить на нем правильное значение потенциала, то никто не будет даже знать, что он там лежит, потому что ничего от его появления не изменилось.
А теперь взгляните внимательнее! На самом-то деле мы решили задачу уже с новым условием: поверхность изогнутого проводника с заданным потенциалом помещена близ точечного заряда. Если наш металлический лист, уложенный на эквипотенциальную поверхность, замыкается сам на себя (или тянется очень далеко), то получается картина, рассмотренная в Гл. 5, § 10, когда пространство делится на две области: одна внутри, другая снаружи замкнутой проводящей поверхности. Там мы пришли к выводу, что поля в этих двух областях совершенно не зависят друг от друга. Так что независимо от того, каково поле внутри замкнутого проводника, снаружи поле всегда одно и то же. Можно даже заполнить всю сердцевину проводника проводящим материалом. Выходит, нам удалось найти поле при конфигурации проводников и зарядов, изображенной на фиг. 6.9. В пространстве вне проводника поле как раз такое, как у двух точечных зарядов (см. фиг. 6.8). Внутри проводника оно нуль. И, кроме того, электрическое поле, как и следовало ожидать, у самой поверхности проводника нормально к ней.
Итак, мы можем рассчитать поля на фиг. 6.9, вычисляя поле, созданное зарядом q и воображаемым точечным зарядом —q, помещенным в подходящем месте. А точечный заряд, который мы представили себе существующим за проводящей поверхностью, так и называется зарядом-изображением.
В книгах можно найти длинные перечни решений задачи электростатики для гиперболических поверхностей и других сложных штук. Вас могло бы удивить, как это удалось рассчитать поля близ поверхностей столь ужасной формы. Но они были рассчитаны задом наперед! Кто-то решил простую задачу
Фиг. 6.9. Поле вне проводника, изогнутого вдоль эквипотенциальной поверхности А на предыдущем рисунке.
с фиксированными зарядами. А затем обнаружил, что появляются некоторые эквипотенциальные поверхности новой формы, ну и написал работу, в которой указал, что поля снаружи проводника такой формы могут быть изображены так-то и так-то.
§ 8. Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этого зачеркнем просто левую часть фигуры. Линии поля нашего решения показаны на фиг. 6.10. Заметьте, что плоскость обладает нулевым потенциалом, потому что она находится как раз на полпути между зарядами. Мы решили задачу о положительном заряде вблизи заземленной проводящей плоскости.
Так мы узнали суммарное поле, но что можно сказать о том, каковы те реальные заряды, которые создали его? Кроме нашего положительного точечного заряда, ими являются какие-то отрицательные заряды, наведенные на проводящей плоскости и притянутые положительным зарядом (с каких-то далеких расстояний). Но теперь пусть вам захотелось узнать (то ли для технических целей, то ли просто из любопытства), как распределены эти отрицательные заряды по поверхности. Поверхностную плотность заряда вы сможете узнать, использовав результат, полученный в гл. 5, § 6 при помощи теоремы Гаусса. Нормальная составляющая электрического поля возле самого проводника равна плотности поверхностного заряда а, деленной на e0. Мы можем узнать плотность заряда в каждой точке поверхности, отправляясь назад от нормальной составляющей электрического поля на поверхности. А ее мы знаем, потому что вообще нам известно поле в любой точке.
Фиг. 6.10. Поле заряда, помещенного близ плоской проводящей поверхности, найденное методом изображений.
Рассмотрим точку поверхности на расстоянии r от той точки, которая расположена прямо против положительного заряда (см. фиг. 6.10). Электрическое поле в этой точке нормально к поверхности и направлено внутрь нее. Составляющая поля положительного точечного заряда, нормальная к поверхности, равна
(6.28)
К ней мы должны добавить электрическое поле, созданное отрицательным зеркальным зарядом. Это удвоит нормальную составляющую (и уничтожит все прочие), так что плотность заряда 0 в произвольной точке поверхности будет равна
(6.29)
Проинтегрировав а по всей поверхности, мы сможем проверить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -q.
Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверхностные заряды [по формуле (6.29)], то можем с помощью интегрирования подсчитать силу, действующую на наш положительный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к плоскости, равную
(6.30)
Мы определили эту силу очень легко, без интегрирования по отрицательным зарядам.
§ 9. Точечный заряд у проводящей сферы
А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11). Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотенциальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда-изображения и нужную его величину, может быть, тогда мы и сможем подогнать эквипотенциальную поверхность к нашей сфере.
Фиг. 6.11. Точечный заряд q наводит на заземленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображения, помещенного в указанной точке.
Это и впрямь может быть сделано, если действовать по следующему рецепту.
Положим, что вы хотите, чтобы эквипотенциальная поверхность была сферой радиуса а с центром, отстоящим от заряда q на расстояние b. Поместите изображение заряда величины q'=-q(a/b) на радиусе, проходящем через заряд на расстоянии a2/b от центра. Потенциал сферы пусть будет нуль.
Математически причина состоит в том, что сфера есть геометрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потенциал в точке Р от зарядов q и q' пропорционален сумме
и будет равен нулю во всех точках, для которых
Если мы помещаем q' на расстоянии а2!b от центра, то отношение r2/r1 равно постоянной величине a/b. Тогда если
(6.31)
то сфера станет эквипотенциалью. Потенциал ее на самом деле будет равен нулю.
А что, если нам понадобится сфера с ненулевым потенциалом? Ведь он равен нулю только тогда, когда ее суммарный заряд случайно окажется равным q'!Конечно, если ее заземлить, то наведенные на ней заряды окажутся в точности такими, как надо. Ну, а если она заизолирована и мы не снабдили ее никаким зарядом? Или снабдили ее зарядом Q№q'? Или она находится под напряжением, не равным нулю? Такие вопросы разрешаются сходу. Всегда ведь можно добавить в центр сферы точечный заряд q". По принципу наложения сфера всегда останется эквипотенциальной, а изменится только величина потенциала. Если у нас, скажем, есть проводящая сфера, предварительно разряженная и изолированная от всего, и мы поднесли к ней положительный заряд q, то суммарный заряд сферы останется равным нулю. Решение можно найти, взяв тот же, что и прежде, заряд-изображение q' и вдобавок к нему заряд в центре сферы, такой, что
Жалоба
Напишите нам, и мы в срочном порядке примем меры.