Кристиан Жоаким - Нанонауки. Невидимая революция Страница 12
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Кристиан Жоаким
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 37
- Добавлено: 2019-02-04 15:51:12
Кристиан Жоаким - Нанонауки. Невидимая революция краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Кристиан Жоаким - Нанонауки. Невидимая революция» бесплатно полную версию:Кристиан Жоаким — один из известнейших специалистов по физике твердого тела, директор Центра структурных исследований и разработки новых материалов (CEMES) в Тулузе. Ответственный руководитель группы Nanosciences. Вместе с журналисткой Лоранс Плевер он рассказывает о том, что такое наномир, как выглядят его обитатели, чем отличаются нанонауки от нанотехнологий и что они сулят человечеству в ближайшем будущем.
Кристиан Жоаким - Нанонауки. Невидимая революция читать онлайн бесплатно
Как бы то ни было, похоже, что полупроводниковый транзистор, уже уменьшившийся за годы миниатюризации донельзя, придется заменить каким-то другим устройством. И пока представляется, что в качестве возможных заменителей наиболее предпочтительны транзистор с одним электроном и спинтронный транзистор — потому что такие приборы могут изготавливаться посредством технологий, уже освоенных по ходу миниатюризации классических транзисторов. Во всяком случае, ясно одно: физики в новых приборах должны как-то использовать квантовые эффекты, а не пытаться обходить или как-то нивелировать эти неизбежные явления.
КРАСНАЯ НИТЬНанотехнологическое предание повествует о прозорливости Фейнмана: мол, именно его якобы пророчества воплотились в отказе от сверхминиатюрных транзисторов в пользу волокон ДНК и микромеханики. На самом деле становление этих нанотехнологий происходило в ходе непрерывного развития обычных приемов, разработанных еще в конце 1950-х годов; достаточно назвать фотолитографию — правда, в приложении к формированию компонентов микроэлектроники и микромеханики, или электронную литографию — в приложении к мезоскопической физике. Такие нанотехнологии подчас имеют дело с предметами, размеры которых измеряются десятками и сотнями нанометров и лишь допуск точности исчисляется единицами нанометров. Тем не менее именно они вышли на передний план и сумели связать свои наименования с ярлыком «бесконечно малые»… тогда как совсем иная технология осталась в тени или скорее была задвинута в тень: речь о технологии действительно нанометрического масштаба, манипулирующей отдельными атомами и позволяющей создавать устройства с размерами в считаные нанометры при допуске точности порядка 0,1 нм. Об этой технологии мы поговорим в следующей главе.
Технологическая алчность побуждает втискивать как можно больше транзисторов в как можно меньшую полупроводниковую пластиночку — в этом и состоит экономический и практический интерес миниатюризации, однако в нашей жизни миниатюризация выводит еще и на некий путь, ведущий к вопросу метафизическому: а не удастся ли однажды смастерить такую машину, которая сможет думать? И этот вопрос красной нитью проходит во многих работах сегодняшних ученых.
Когда Паскаль воплощал в неживом веществе свою вычислительную машину, его «паскалина» не думала. Когда Джеймс Уатт изобретал маленькую паровую машину для своей лаборатории, он придумал для нее управляющую программу в виде трех дырочек, пробитых в жестяной пластинке. И эта пластинка с дырочками определяла очередность, в которой открывались и закрывались вентили и клапаны его машины. Паровая машина тоже не думала, кто спорит. Когда в 1820 году Чарльз Бэббидж задумал построить первую механическую вычислительную машину, она могла выполнять множество различных действий, но, конечно, при этом ни о чем не думала. В наши дни, когда инженеры втискивают в малюсенькую коробочку 100 млн транзисторов, такая шкатулочка, очевидно, тоже не мыслит. Да и вообще возможно ли собрать из шестеренок, трубок, вакуумных ламп или транзисторов мыслящую машину? В 1957 году Джон фон Нейман объявил, что для этого потребуется 100 000 транзисторов. Миниатюризация помогла преодолеть и этот рубеж, причем уже давно, а машины все еще так и не научились думать.
Глава 3
Оставаясь на дне
В конце концов, как бы ни хотелось миниатюризировать и миниатюризировать, приходит день, когда кусочек вещества становится слишком уж маленьким, чтобы втиснуть в него приборчик и тем более машину… В 1960-х годах думали, что миниатюризация наткнется на естественный предел тогда, когда выйдет на размеры молекул живого вещества — а это белки или ДНК, молекулы из тысяч атомов. Как раз в то время узнали о способности макромолекул накапливать информацию, транспортировать другие молекулы, вырабатывать энергию и общаться между собой. Так, есть энзимы[13] с несколькими активными участками, и активность этих участков управляется другими молекулами — иначе говоря, такой энзим «срабатывает» по команде, которой может служить молекулярный или электрический сигнал — что немного похоже на срабатывание электронного реле. В 1970 году Жан Моно в своей работе о «Случайности и необходимости» [Le Hasard et la Nécessité] писал, что вызов, брошенный физикам, состоит в том, что минимальная масса электронного реле примерно равна 10-2 г, а масса энзима, способного выполнять те же действия, что и реле, порядка 10-17 г, то есть в миллион миллиардов раз меньше! Тем самым подчеркивались возможности тогдашних сверхминиатюрных устройств, а им было далеко до тех чудес, которыми мы располагаем сегодня. В то время и думать никто не смел о машинах, по размеру меньших, чем макромолекулы. Да и сами макромолекулы казались чересчур крошечными, чтобы на их основе создавать какие-то работающие устройства. Моно бросил ученым вызов: он говорил, что вот есть молекула, она вполне материальна, устойчива во времени (существует достаточно долго) и имеет определенную протяженность в пространстве — перечисленных качеств довольно, чтобы эту молекулу превратить в машину. Но как? Идеи Моно казались абсолютно безосновательными. Но в 1990-е годы родилась иная мысль — почему бы не перевернуть порядок создания машины? То есть начинать не с большого объема вещества, из которого понемногу удаляют все лишнее, в итоге получая миниатюрную машину, а наоборот — взять несколько атомов и строить из них машину, добавляя по мере необходимости новые атомы. Вот на этой идее и строится некая новая технология — нанотехнология. Иначе этот перевернутый порядок формирования машины можно назвать «восходящим», и настоящая глава посвящена рассмотрению первого этапа создания двигателей и механизмов из молекулярных комплексов: мы с самого начала «остаемся на дне» шкалы величин, чтобы понять, как обращаться с одним-единственным атомом или молекулой, в которой не более считаных десятков атомов. Мы будем учиться манипулировать частицами много меньше биологических объектов.
Благо, что у нас есть орудие, открывающее врата в этот рай, да еще и предлагающее технические способы обычного технологического порядка, — это изобретенный в 1981 году туннельный микроскоп. Впервые изображение одиночной молекулы было получено в 1957 году, на электронном микроскопе (см. Приложение I). Но туннельный микроскоп позволит не только вывести на экран изображение одной молекулы, но и прикоснуться к этой молекуле иглой микроскопа. Независимость молекулы, то есть ее существование в качестве самостоятельной материальной сущности, превратилась из умозрительного представления в факт, который можно использовать. С тех пор, собственно, и началось приключение по имени нанотехнология. Это она позволяет создавать устройства много меньших размеров, чем все то, что изготавливалось до сих пор: речь о приборах величиной порядка нанометра и допусках точности в десятые доли нанометра.
Нанотехнология, следовательно, — новый этап многовековой эпопеи, именуемой познанием материи или наукой о веществе, а не просто еще одна фаза развития материаловедения.
РОЖДЕНИЕ МОЛЕКУЛЫПрикосновение иглы туннельного микроскопа к молекуле превращает ее в самую малюсенькую машину из всех, какие только возможны. Однако с самого начала понятие молекулы предлагалось как ответ на задачу определения веществ. По определению, молекула есть самая маленькая частица соответствующего вещества. О том, что такое молекула, ученые всегда много и горячо спорили. Джованни Альфонсо Борелли (1608–1679) мыслил вещество — тот или иной его вид (металл, газ, жидкость) — как нагромождение «маленьких машин» (machinulae), причем эти «машинки» то сближаются, то убегают друг от друга. Ученых XVII века мучили неудобства господствовавшего в то время учения Аристотеля, который учил, что все вещество состоит из четырех стихий (лат. «элементы»): земли, воды, огня и воздуха. Среди тех, кого не устраивали идеи Аристотеля, был и нидерландский врач и математик Исаак Бекман, переписывавшийся со многими своими учеными современниками. А еще он регулярно вел научный дневник, который прилежно заполнял размышлениями и описаниями своих экспериментов. 14 сентября 1620 г. он записал, что после деления дозы лекарства пополам обе полудозы сохранили целебные свойства. Последующие деления показали то же, но, рассуждал Бекман, если делить дозу надвое вновь и вновь, наверное, настанет такое время, когда крошечный осколок утратит свои свойства. Бекман назвал эту мельчайшую частичку, сохраняющую целительные свойства, «минимумом». Этот «минимум» означал то же, что и нынешний термин «молекула». Бекман думал, что «минимум» состоит из атомов, которые сделаны из «первичного вещества», хотя и отличаются друг от друга своими «формами». Он при этом уточнил, что можно различить по крайней мере четыре типа атомов (что соответствует четырем стихиям), хотя их может быть и больше (сегодня мы знаем о ста восемнадцати элементах).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.