Кристиан Жоаким - Нанонауки. Невидимая революция Страница 13
- Категория: Научные и научно-популярные книги / Научпоп
- Автор: Кристиан Жоаким
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 37
- Добавлено: 2019-02-04 15:51:12
Кристиан Жоаким - Нанонауки. Невидимая революция краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Кристиан Жоаким - Нанонауки. Невидимая революция» бесплатно полную версию:Кристиан Жоаким — один из известнейших специалистов по физике твердого тела, директор Центра структурных исследований и разработки новых материалов (CEMES) в Тулузе. Ответственный руководитель группы Nanosciences. Вместе с журналисткой Лоранс Плевер он рассказывает о том, что такое наномир, как выглядят его обитатели, чем отличаются нанонауки от нанотехнологий и что они сулят человечеству в ближайшем будущем.
Кристиан Жоаким - Нанонауки. Невидимая революция читать онлайн бесплатно
В 1621 году Себастьен Бассон пришел к сходным представлениям. Он был богословом, регентом коллегии в Дофине. Интересуясь происхождением и строением вещества, он поначалу изучал древние источники, предшествующие Аристотелю, стало быть, более близкие ко времени сотворения мира и, значит, заведомо более достоверные. Бассон изучил доводы атомистов, доказывавших, что материя непрерывна и состоит из атомов, и решил проверить эти утверждения на опыте, для чего влил тонкой струей немного вина в воду. Вино растворялось и постепенно расходилось по большому объему воды, что, по мнению атомистов, доказывало — вещество делится на частицы. Решив, что вещество состоит из первичных частиц, Бассон тоже заговорил о минимумах. Его минимумы, однако, состояли из тех же четырех стихий, и один минимум отличался от другого долей в его составе тех или иных стихий. Еще он решил, что минимумы собираются в частицы второго порядка, а те — в частицы третьего порядка, и т. д., и эти скопления частиц мало-помалу приобретают вид и размеры тех предметов, которые мы видим вокруг себя. Так родилось представление о молекуле — то есть о мельчайшей частице некоторого вещества, которая, однако, построена из других частиц (стихий или элементов). Правда, само слово «молекула» (molecula) появилось много позже, в 1636 году, из-под пера Пьера Гассенди: этот французский священник присоединил суффикс — кула к слову «моль», означавшего тогда то, что теперь обозначается словом «масса», чтобы перевести слово «частица» в писаниях Диогена Лаэртского — того места, где Диоген рассказывает о философе-атомисте Эпикуре (но древнегреческая молекула совсем не похожа на молекулу, которую мы знаем сегодня).
Молекулы, пусть тогда и бывшие чистым предположением, сильно разволновали ученых, занимавшихся наукой о материи. Антуан Лавуазье (1743–1794) показал, что вещество сохраняет свои свойства — он говорил о тождественности — в любом состоянии: парообразном, жидком или твердом. Водяной пар, вода и лед состоят из одного и того же вещества, только молекулы, которые его образуют, выстраиваются по-разному, в зависимости от конкретного физического состояния. Лавуазье был большим мастером «молекулизации мира»:[14] концепция молекулы еще только развивалась и развертывалась, и лишь к концу XVIII века она утвердилась настолько, что ученые понемногу начали объяснять наблюдаемые явления, прибегая к понятию «молекула».
В XIX веке наука о материи продвигалась вперед так успешно, как никогда ранее. Англичанин Джон Дальтон догадался, что вещество состоит из атомов с разными массами и атомы объединяются в молекулы — так в первый раз прозвучало правильное описание материи. Итальянский химик Амедео Авогадро вскоре показал, что в двух герметичных сосудах одинаковой величины, если в них поддерживаются одно и то же давление и одинаковая температура, содержится одно и то же количество молекул (приблизительно 27 тысяч миллиардов миллиардов, 27 X 1023, молекул на литр), какой бы газ ни содержался в сосуде: молекула приобрела телесность, вещественность, можно сказать, стала осязаемой. Но ученые по-прежнему говорили на разных языках. Так, Авогадро обсуждал свойства не атомов, а «элементарных молекул», зато Джон Дальтон называл молекулы «сложными атомами». В 1860 году в Карлсруэ собрался большой конгресс, чтобы прояснить ситуацию и договориться о терминологии. После ожесточенных споров химики все же согласились принять ряд основополагающих определений, которые почти в неизменном виде в ходу и поныне. Среди прочего было утверждено и различение между атомом и молекулой (группой атомов).
А КАК ОНА ВЕЛИКА, ЭТА МОЛЕКУЛА?С этого времени умножились попытки определить физические размеры молекулы, само существование каковой, честно говоря, все еще оставалось чистой гипотезой. Австрийский ученый Йозеф Лошмидт (1821–1895) вычислил диаметр «молекулы воздуха»: получилось 9,69 x 10-7 мм, то есть 0,969 наших нынешних нанометров, что, конечно, совершенно замечательно… вот только нет никаких таких молекул воздуха[15]. Английский физик лорд Кельвин (1824–1895), воспользовавшись иным методом, оценил размеры атомов цинка и меди в 0,1 нм. Порядок величины верен. Задолго до этого Бенджамин Франклин (1706–1790) предложил эксперимент, позволивший, пусть на сто с лишним лет позже, рассчитать размеры молекулы. Франклин, как и многие другие, заметил, что растительное масло не смешивается с водой, а образует на ее поверхности тонкую пленку. Положим, что толщина пленки — одна молекула, тогда разделив объем разлитого масла на площадь образовавшегося пятна пленки, получим размер молекулы масла — порядка нанометра (этот опыт и теперь показывают школьникам и студентам).
Однако на протяжении всего XIX века химиков сильно смущала одна загадка, с которой они то и дело сталкивались: некоторые вещества, состоявшие из, казалось бы, одинаковых молекул, выказывали совершенно разные свойства. Почему это? Что же это такое получается? Шведский химик Йенс Якоб Берцелиус предположил: «Быть может, в будущем эту [тайну] прояснит изучение пространственной формы [молекул]». И назвал эти ставящие в тупик химические соединения «изомерами». Его гипотеза оказалась верной: в 1875 году химики Якоб Ван Гофф и Жозеф Ле Бель обнаружили, что связи атома углерода направлены из центра атома к вершинам некоторого тетраэдра. Молекула оказалась трехмерной, то есть занимающей в пространстве определенный объем. Следовательно, две молекулы, составленные из одинаковых атомов, способны по-разному располагаться относительно друг друга, и, если конфигурации молекул различны, то и их свойства будут разными. Немецкий физик Рудольф Клаузиус показал, что архитектура молекулярных конфигураций не слишком жестка: атомы совершают небольшие колебания, даже в твердом теле. В 1890 году молодой немецкий химик Герман Заксе пошел дальше, обнаружив, что архитектура молекул еще и не так уж постоянна, она может искажаться, словно обладая «гибкостью» или пластичностью. В конце концов, на исходе XIX века, молекула обрела примерно тот облик, который мы приписываем ей и теперь: этакий скелетик из атомов, ответвления от которого, да и он сам, могут менять свое положение в пространстве, принимая те или иные формы.
Ученые наконец смогли понять множество наблюдаемых макроскопических явлений, объясняя происходящее поведением молекул. Но вот незадача: никто никогда не видел ни единой молекулы — уж слишком они малы, настолько, что ни в один микроскоп не углядишь. Так что по большому счету молекула оставалась гипотезой, и немало ученых людей, в том числе и самых прославленных, отказывались признавать саму концепцию молекулы. Например, несгибаемый Марселен Бертло, сильный человек, и не только выдающийся ученый, но еще и государственный муж, один из самых влиятельных деятелей своего времени (профессор Коллеж де Франс, член Академии наук, занимал посты министра просвещения и министра иностранных дел), считал само представление о молекуле вздорным измышлением и приклеил к нему ярлык «мистической концепции». Но после 1908 года отрицать молекулы стало неприлично, так как в том году французский физик Жан Перрен представил неоспоримые экспериментальные доказательства их существования.
ДЕМОН МАКСВЕЛЛАВ 1871 году британский физик Джеймс Клерк Максвелл вызвал настоящую культурную революцию, которая, правда, поначалу осталась незамеченной. Ученый придумал — или вообразил — некую сущность, или существо, или невесть что еще, но это что-то — или кто-то — умел измерять скорость каждой молекулы газа, заключенного в некотором сосуде. Значит, этот демон Максвелла, как его окрестили позднее, действительно должен быть очень маленьким. И ему по силам не только «следить» за молекулами, разбегающимися во все стороны, но и еще как-то сортировать их — по скорости: вялых в одну сторону, резвых — в другую. И если запустить этого чертенка в объем вещества, температура которого — комнатная, то он затолкает половину молекул, медленных, на одну сторону (там получится холодная сторона), а вторую половину молекул, горячих, — на другую (там будет раскаленный угол). Получается, что температура напрямую зависит от скорости молекул. Построения Максвелла — всего лишь мысленный эксперимент, грубо говоря, игра воображения, но, придумав своего «демона», ученый тем самым предложил новое понимание того, что творится на молекулярном уровне. В 1870-е годы молекула, можно сказать, обрела некий уже различимый облик. Понятно, что о каких-то молекулярных устройствах тогда и думать было нечего, и никто даже не заикался о проектировании, тем более производстве подобных приборов. Демон Максвелла никуда не делся, с ним охотно забавлялись творцы термодинамики, но естественно вытекающая из представления о демоне идея молекулярного двигателя была забыта — на добрые сто лет.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.