Артур Бенджамин - Магия математики: Как найти x и зачем это нужно Страница 43
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Артур Бенджамин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 62
- Добавлено: 2019-01-28 16:19:11
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Артур Бенджамин - Магия математики: Как найти x и зачем это нужно» бесплатно полную версию:Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно читать онлайн бесплатно
Для треугольника с длинами сторон 3, 4 и 5 (см. рисунок) калькулятор может рассчитать ∠A тремя различными способами, каждый из которых будет основан на своей обратной функции:
∠A = sin–1(3/5) = cos–1(4/5) = tan–1(3/4) ≈ 36,87° ≈ 37°Самое время применять все эти знания на деле. В «геометрической» главе мы доказали теорему Пифагора, с помощью которой можно вычислить длину гипотенузы прямоугольного треугольника, зная длины его катетов. Здесь же, в главе «тригонометрической», мы можем сделать практически то же самое для любого треугольника. В этом нам поможет закон косинусов.
Теорема (закон косинусов): Длина стороны c любого треугольника ABC, в котором стороны a и b образуют ∠C, соответствует
c² = a² + b² – 2ab cos C.Для примера взгляните на изображенный ниже треугольник ABC. Между двумя его сторонами с длинами 21 и 26 лежит угол 15°. Согласно закону косинусов, длина третьей стороны с составит
c² = 21² + 26² – 2(21)(26) cos 15°А так как cos 15° ≈ 0,9659, уравнение упрощается сначала до c² = 62,21, а потом и до c ≈ 7,89.
ОтступлениеДоказательство: Чтобы доказать эту теорему, рассмотрим три частных случая – в зависимости от того, будет ли ∠C прямым, острым или тупым. Если ∠C – прямой, его косинус будет равен cos 90° = 0, что упрощает закон косинусов до c² = a² + b², то есть до уже доказанной нами теоремы Пифагора.
Если ∠C – острый (как на рисунке), опустим перпендикуляр из ∠B к стороне AC до лежащей на ней точки D. Получим два треугольника. Применим теорему Пифагора к CBD – a² = h² + x² и придем к
h² = a² – x²Треугольник же ABD можно просчитать как c² = h² + (b – x)² = h² + b² – 2bx + x², то есть
h² = c² – b² + 2bx – x²Составим из двух равных h² частей уравнение:
c² – b² + 2bx – x² = a² – x²Следовательно,
c² = a² + b² – 2bxВ треугольнике CBD cos C = x/a, поэтому x = a cos C. Следовательно, если ∠C является острым, то
c² = a² + b² – 2ab cos CЕсли же ∠C – тупой, дополним треугольник ABC прямоугольным треугольником CBD, как на рисунке:
Для него, как и для получившегося большого, верна теорема Пифагора: a² = h² + x² и c² = h² + (b + x)². Как и в случае с острым ∠C, соединим уравнения:
c² = a² + b² + 2bxВ треугольнике CBD cos (180° – C) = x/a, то есть x = a cos (180° – C) = –a cos C. И мы вновь приходим к искомому:
c² = a² + b² – 2ab cos C☺Кроме того с помощью функций можно рассчитать площадь треугольника.
Сопутствующая теорема: В любом треугольнике ABC со сторонами a и b и лежащим между ними ∠C
ОтступлениеДоказательство: Площадь треугольника с длиной основания b и высотой h равна Все три треугольника, рассмотренные при доказательстве закона косинусов, имеют основание b. Определим высоту h. В остроугольном треугольнике обратим внимание на то, что sin C = h/a, то есть h = a sin C. В тупоугольном треугольнике sin (180° – C) = h/a, поэтому опять имеем h = a sin (180° – C) = a sin C. В прямоугольном же треугольнике h = a, что равно a sin C, потому что C = 90°, а sin 90° = 1. Следовательно, так как во всех трех случаях h = a sin C, площадь треугольников составит что и требовалось доказать.
Следствия этой теоремы очевидны:
Другими словами, в треугольнике ABC (sin C)/c равен его удвоенной площади, разделенной на произведение длин трех его сторон. Какой угол выбрать, по большому счету не так уж и важно – (sin B)/b или (sin A)/a дадут нам тот же результат. И это доказывает одну очень полезную теорему.
Теорема (закон синусов): В любом треугольнике ABC, длины сторон которого соответственно равны a, b и c,
Закон синусов – это еще один способ вычислить высоту нашей горы. На этот раз мы сосредоточимся на a – диагонали, пролегающей между нами и вершиной:
Способ № 5 (закон синусов): В треугольнике ABD ∠BAD = 32°, а ∠BDA = 180° – 40° = 140°. Следовательно, ∠ABD = 8°. Согласно закону синусов получаем
Умножим обе части на sin 32°, что даст нам a = 300 sin 32°/ sin 8° ≈ 1143 метров. А так как sin 40 ≈ 0,6428 = h/a, то
h = a sin 40 ≈ (1143)(0,6428) = 735что полностью совпадает с ответом, к которому мы пришли в прошлом разделе.
ОтступлениеНе менее замечательна в этом отношении формула Герона, с помощью которой можно найти площадь треугольника по длинам его сторон a, b и c. Сначала мы находим полупериметр p:
А потом и площадь S:
S = √p(p – a)(p – b)(p – c)Например, если взять треугольник со сторонами 3, 14 и 15 (узнаете первые пять цифр числа π?), полупериметр будет равен (3 + 14 + 15)/2 = 16, а площадь, таким образом, – √(16(16 – 3)(16 – 14)(16 – 15)) = √416 ≈ 20,4.
Несложно, правда? Уверен, внимательный читатель не сможет не заметить здесь закон косинусов, слегка приправленный алгеброй.
Тригонометрические тождества
Но этим возможности тригонометрических функций не ограничиваются. Они способны и на куда более интересные и запутанные взаимоотношения – так называемые тождества. Некоторые из таких тождеств мы уже наблюдали, например,
sin (–A) = –sin Acos (–A) = cos AНо их, конечно же, куда больше.
Из тождеств рождаются формулы, притом весьма полезные. Ими-то мы и займемся в этом разделе.
Первое тождество основывается на формуле единичной окружности:
x² + y² = 1Под эту формулу должна подходить точка (cos A, sin A), принадлежащая единичной окружности. Следовательно, (cos A)² + (sin A)² = 1, из чего проистекает, пожалуй, наиболее важное тригонометрическое тождество.
Теорема: Для любого ∠A
cos² A + sin² A = 1До сих пор все произвольные углы мы обозначали буквой A. Но это не значит, что вы обязаны всегда так делать, можно брать и другие буквы, например, x:
Жалоба
Напишите нам, и мы в срочном порядке примем меры.