Артур Бенджамин - Магия математики: Как найти x и зачем это нужно Страница 44

Тут можно читать бесплатно Артур Бенджамин - Магия математики: Как найти x и зачем это нужно. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Артур Бенджамин - Магия математики: Как найти x и зачем это нужно» бесплатно полную версию:
Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно читать онлайн бесплатно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно - читать книгу онлайн бесплатно, автор Артур Бенджамин

До сих пор все произвольные углы мы обозначали буквой A. Но это не значит, что вы обязаны всегда так делать, можно брать и другие буквы, например, x:

cos² x + sin² x = 1

В тригонометрии для этой цели часто используется греческая буква θ (тета) –

cos² θ + sin² θ = 1

А бывает и так, что вообще ничего не используется:

cos² + sin²= 1

Но перед тем как доказывать какое бы то ни было тождество, нужно найти длину отрезка прямой. В этом нам поможет теорема Пифагора.

Теорема (формула расстояния между двумя точками): Обозначим длину отрезка прямой от точки (x1, y1) до точки (x2, y2) буквой L. Тогда

Например, длина отрезка от точки (–2, 3) до точки (5, 8) равна

Доказательство: Возьмем две точки (x1, y1) и (x2, y2). Начертим прямоугольный треугольник, гипотенузой которого будет отрезок, соединяющий эти точки. На рисунке выше длина основания равна x2 – x1, а высота – y2 – y1. Следовательно, согласно теореме Пифагора, гипотенуза L равна

L² = (x2 – x1)² + (y2 – y1)²

то есть что и требовалось доказать.

Отступление

Чему будет равна диагональ в коробке размером a × b × c? Возьмем прямоугольник, образующий дно этой коробки, и обозначим пару противоположных его углов буквами O и P. Длина и ширина при этом будут равны соответственно a и b, а диагональ OP – √(a² + b²).

Теперь проложим линию c от точки P к точке Q, образующей угол, противолежащий O. Чтобы найти расстояние от O до Q, нам понадобятся длины катетов прямоугольного треугольника и c. Применим к ним теорему Пифагора и получим, что длина диагонали OQ равна

Ну а теперь собственно тождество – столь же полезное, сколь и красивое. Доказательство может показаться несколько запутанным, поэтому можете смело его пропускать (хотя я все же советую вам в нем разобраться – оно ляжет в основу доказательства других тождеств).

Теорема: Для любых углов A и B

cos(A – B) = cos A cos B + sin A sin B

Доказательство: На единичной окружности, центром которой является точка O, расположены точки P (cos A, sin A) и Q (cos B, sin B). Предположим, что длина отрезка PQ равна с. Что можно сказать о ней?

В треугольнике OPQ отрезки OP и OQ являются радиусами единичной окружности, а значит, их длина равна 1, а ∠POQ может быть измерен как A – B. Следовательно, согласно закону косинусов,

c² = 1² + 1² – 2(1)(1) cos (A – B) = 2 – 2 cos (A – B)

С другой стороны, формула расстояния приводит нас к уравнению

c² = (x2 – x1)² + (y2 – y1)²

поэтому расстояние c от точки P = (cos A, sin A) до точки Q = (cos B, sin B) соответствует

c² = (cos B – cos A)² + (sin B – sin A)² = cos² B – 2 cos A cos B + cos² A + sin² B – 2 sin A sin B + sin² A = 2 – 2 cos A cos B – 2 sin A sin B

где последнее представление основывается на уравнениях cos² B + sin² B = 1 и cos² A + sin² A = 1.

Соединив эти уравнения для c², получаем

2 – 2 cos (A – B) = 2 – 2 cos A cos B – 2 sin A sin B

Вычтем из обеих частей 2, разделим их на –2 и получим

cos (A – B) = cos A cos B + sin A sin B

что и требовалось доказать.◻

Отступление

Формула для cos (A – B) основывается на законе косинусов и исходит из того, что 0° < A – B < 180°. Но ту же теорему можно доказать и выйдя за рамки подобных ограничений. Если переместить треугольник POQ по часовой стрелке на B градусов, мы получим конгруэнтный ему треугольник P'OQ', в котором Q' будет располагаться на оси x в координатах (1, 0).

Так как ∠P'OQ' = A – B, P' = (cos (A – B), sin (A – B)). Согласно формуле расстояния для P'Q' будет верно следующее:

c² = (cos (A – B) – 1)² + (sin (A – B) – 0)² = cos² (A – B) – 2 cos (A – B) + 1 + sin² (A – B) = 2 – 2 cos (A – B)

Из этого можно заключить, что c² = 2 – 2 cos (A – B), при этом нам не нужны ни теорема косинусов, ни предположение об угле A – B. Ну а дальнейшее доказательство можно скопировать с предыдущего.

Обратите внимание, что при A = 90° формула для cos (A – B) утверждает следующее:

cos (90° – B) = cos 90° cos B + sin 90° sin B = sin B

Происходит это на том основании, что cos 90° = 0, а sin 90° = 1. Если в этом уравнении заменить B на 90° – B, получим

cos B = cos 90° cos (90° – B) + sin 90° sin (90° – B) = sin (90° – B)

Мы уже доказали правдивость этих утверждений на примере B как острого угла. Однако алгебра позволяет нам пойти дальше и подтвердить их для любого значения B. Так, если заменить B на – B, мы придем к

cos (A + B) = cos A cos (–B) + sin A sin (–B) = cos A cos B – sin A sin B

так как cos (–B) = cos B, а sin (–B) = –sin B. Если предположить, что B = A, у нас получится формула функций двойного угла:

cos (2A) = cos² A – sin² A

А так как cos² A = 1 – sin² A и sin² A = 1 – cos² A, мы также можем утверждать, что

cos (2A) = 1 – 2 sin² A и cos (2A) = 2 cos² A – 1

Из этого тождества косинусов проистекает аналогичное тождество синусов, например,

sin (A + B) = cos (90 – (A + B) = cos ((90 – A) – B) = cos (90 – A) cos B + sin (90 – A) sin B = sin A cos B + cos A sin B

B = A приводит нас к формуле функций двойного угла для синусов –

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.