Артур Бенджамин - Магия математики: Как найти x и зачем это нужно Страница 45

Тут можно читать бесплатно Артур Бенджамин - Магия математики: Как найти x и зачем это нужно. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Артур Бенджамин - Магия математики: Как найти x и зачем это нужно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Артур Бенджамин - Магия математики: Как найти x и зачем это нужно» бесплатно полную версию:
Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно читать онлайн бесплатно

Артур Бенджамин - Магия математики: Как найти x и зачем это нужно - читать книгу онлайн бесплатно, автор Артур Бенджамин

B = A приводит нас к формуле функций двойного угла для синусов –

sin (2A) = 2 sin A cos A

а замена B на – B – к

sin (A – B) = sin A cos B – cos A sin B

Давайте соберем в одну таблицу все тождества, которые мы успели вывести в этой главе:

Повторюсь: использовать буквы A и B вы не обязаны, сгодятся и любые другие (скажем, cos (2u) = cos²u – sin²u или sin (2θ) = 2 sin θ cos θ).

Радианы и графики в тригонометрии

До сих пор нам встречались углы, значения которых находились исключительно в диапазоне от 0 до 360 градусов. Но пристальный взгляд на единичную окружность невольно заставляет усомниться в обоснованности выбора числа 360. Сделан он был давным-давно, еще в древнем Вавилоне, где в обиходе была шестидесятеричная система счисления, использовавшаяся в том числе и в календаре (да-да, число 360 подозрительно напоминает количество дней в году). Альтернатива была предложена много позже, в XIX веке, когда в математике – а затем и в других науках – появилось понятие радиана, представляющего собой

2π рад = 360°

или, другими словами,

Для тауистов, почитающих число t как 2π,

В числовом же выражении 1 радиан примерно равен 57°.

Но зачем они нужны, спросите вы. И чем вдруг научному сообществу так не угодили привычные всем градусы?

В круге с радиусом r угол в 2π радианов охватывает длину окружности 2πr. Если взять часть этого большого угла, величина дуги, отделяемой этой частью, будет в 2πr раз больше получившейся дроби. Если говорить конкретнее, то 1 радиан «захватывает» дугу длиной 2πr(1/2π) = r, а m радианов – дугу длиной mr. В единичной окружности значение угла в радианах равно длине соответствующей ему дуги. Разве не удобно?

А вот единичный круг, поделенный на самые «популярные» углы – значения выражены как в градусах, так и в радианах.

Для сравнения – версия с t вместо π.

На рисунках, кстати, очень хорошо заметно, насколько t удобнее π. Для угла 90° (занимающего четверть окружности) представление в радианах выглядит как t/4; для угла 120° (треть окружности) – как t/3; для угла 60° (одна шестая окружности) – как t/6; t же есть, по сути, один полный оборот, то есть угол 360°.

Как нам еще предстоит убедиться, радианы позволяют значительно упростить формулы и уравнения подсчета тригонометрических функций. Формулы синуса и косинуса, например, можно превратить в «бесконечные ряды многочленов»:

sin x = x – x2/3! + x5/5! – x7/7! + x9/9! –…cos x =1 – x2/2! + x4/4! – x6/6! + x8/8! –…

но только если x измеряется в радианах. Или при исчислении, например, мы увидим, что cos x есть производная функция sin x при том же условии. Так же и графики тригонометрических функций y = sin x и y = cos x строятся обычно на основании радианного представления x.

Графики эти будут повторяться с шагом 2π (тауисты, на старт!). Происходит это из-за того, что как синус, так и косинус берут свои начала в окружности, а угол x + 2π по своей природе ничем не отличается от угла x. Именно поэтому эти функции называются периодическими, а шаг 2π – периодом синуса и косинуса. Кстати, если сдвинуть график косинуса вправо на π/2, он точь-в-точь совпадет с графиком синуса, потому что значение π/2 в радианах соответствует углу 90°. Из всего этого следует, что

sin x = cos (π/2 – x) = cos (x – π/2)

(например, sin 0 = 0 = cos (–π/2), а sin π/2 = 1 = cos 0).

Тангенс, равный, как мы помним, sin x/cos x, так и останется неопределенным при cos x = 0 (что происходит всякий раз, когда линия графика проходит ровно посередине двух значений, кратных числу π). Значит, период тангенса равен π.

Синуса и косинуса, в принципе, достаточно, чтобы прийти к любой другой периодической тригонометрической функции. Именно благодаря такому своему уникальному свойству, как периодичность, они обрели огромную популярность для решения практических задач, в условиях которых заложена цикличность и «сезонность». Это и измерение температур, и анализ экономических данных, и многое другое. А еще с тригонометрическими функциями так или иначе связаны звуковые колебания, волны на воде, электричество и даже сердцебиение.

Ну и, по традиции, в завершение главы – самое интересное: между тригонометрией и числом π существует удивительная, поистине волшебная связь. Хотите ее увидеть? Возьмите калькулятор и наберите на нем столько пятерок, сколько получится. У меня, например, на экране уместилось их целых 16 – 5 555 555 555 555 555. Теперь посчитайте величину, обратную этому числу; у меня получилось

1/5 555 555 555 555 555 = 1,8 ×10–16

Нажмите кнопку «sin» и посмотрите, что у вас получилось (вначале может идти несколько нолей – просто не обращайте на них внимания). Лично на меня с дисплея смотрело число

3,1415926535898 × 10–18

которое (после отбрасывания 17 нолей, идущих за запятой) почти в точности повторяло первые 16 цифр числа π! К тому же результату можно прийти, начав с любого числа, состоящего как минимум из пяти пятерок.

В этой главе мы выяснили, зачем нужна тригонометрия, и увидели, как она помогает нам лучше понять свойства треугольников и окружностей. Тригонометрические функции – не просто «вещи в себе», они взаимодействуют, вступая друг с другом в замысловатые, но прекрасные в своей стройности отношения. А еще мы проследили их связь с числом π. Теперь черед за двумя другими важнейшими для математики величинами: иррациональной e = 2,71828… и мнимой i.

Глава номер десять

Магия чисел i и e

Самая прекрасная математическая формула

Время от времени (с завидной, надо признать, регулярностью) математические и другие научные периодические издания проводят среди своих читателей опросы, предлагая им выбрать самое красивое уравнение. И раз за разом в числе лидеров оказывается она – удивительная формула, известная как тождество Эйлера:

eiπ + 1 = 0

Некоторые даже называют ее «уравнением Бога», ведь в ней сошлись вместе пять фундаментальных констант, пять самых важных чисел математики: 0 и 1 – начала всех арифметических начал, π, позволяющее постичь геометрию, e, открывающее врата во вселенную исчисления, и i, из которого произрастает древо алгебры.

В нем прекрасны и отношения между этими числами: сложение, умножение и возведение в степень – все то, что символизирует рост.

О ноле, единице и π мы уже кое-что знаем, самое время разобраться с иррациональным e и мнимым i. А когда разберемся, вы удивитесь, насколько простым вам покажется тождество Эйлера, буквально как 1 + 1 = 2 (ну или хотя бы как cos 180° = –1).

Отступление

А вот еще несколько постоянных претендентов на корону самой красивой формулы. Большинство из них уже встречались вам на уже прочитанных страницах или скоро встретятся на непрочитанных. Первые два также рождены гением Леонарда Эйлера.

Мнимое число i: квадратный корень –1

Загадочная природа числа i кроется в формуле

i² = –1

На первый взгляд это кажется совершенно невозможным: разве может быть отрицательным число, умноженное несколько раз на само себя? В конце концов, даже 0² = 0, а любая возведенная в квадрат отрицательная величина обязана стать положительной, разве нет? Не спешите рубить с плеча. Вспомните, ведь было такое время, когда вы вообще ничего не знали об отрицательных числах, да и, узнав, вряд ли сразу же поверили в их существование (как и многие-многие математики до вас). Что это вообще за глупость – количество, меньшее, чем 0? Как что-то может быть меньше, чем ничто? Но потом в вашей жизни появляется некая ось (вроде той, что изображена чуть ниже), а вместе с ней – и все ее обитатели: положительные значения, расположившиеся справа от 0, и отрицательные значения, расположившиеся слева. В точно таком же, нестандартном ключе нам следует рассматривать и число i – тогда-то нам и откроется его истинное, реальное значение.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.