Александр Петелин - Естествознание Страница 6
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Александр Петелин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 14
- Добавлено: 2019-01-28 16:32:15
Александр Петелин - Естествознание краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Петелин - Естествознание» бесплатно полную версию:В учебнике изложены основные современные представления о Вселенной, ее образовании, строении и будущем. Рассмотрено строение нашей галактики и Солнечной системы. Приведены сведения о строении Земли. В отдельных разделах даны краткие сведения по физике и химии.Вторая часть учебника посвящена биологии и экологии в широком смысле этого понятия. Затронуты вопросы экосистем, учения академика Вернадского о биосфере.Книга написана живым и очень доступным языком, снабжена интересным иллюстративным материалом. Она предназначена для обучения по курсу «Естествознание» в колледжах гуманитарного профиля, а также может быть полезна преподавателям средних учебных заведений. Надеемся, что широкий круг любознательных молодых читателей тоже сможет почерпнуть в ней немало интересного.
Александр Петелин - Естествознание читать онлайн бесплатно
Постоянное ускорение определяется как
где v – v0 – приращение скорости за время t.
Мгновенное ускорение:
Путь при равноускоренном движении:
где v0 – скорость тела в начальный момент времени.
На практике нужно знать не только значение, но и направление скорости в пространстве, например, чтобы описать движение (траекторию) автомобиля, самолета или космического корабля. Любая физическая величина, которая не будет полностью определена, если задать только ее значение и не указать, в какую сторону она направлена, является вектором.
Скорость – это вектор. Если разложить вектор скорости v при движении тела в пространстве по осям декартовой системы координат, то мы получим ее составляющие vx, v, vz. Они связаны с полной скоростью v соотношением
Следует отметить, что векторную природу имеет ускорение a, а также многие величины, которые мы будем использовать в дальнейшем изложении: сила F, импульс p и другие. Во всех случаях векторные величины отмечаются стрелкой «->», помещенной над буквенным обозначением величины. Значение самой величины (ее абсолютная величина) обозначается просто буквой, например, a – значение ускорения.
Рассмотрим равномерное движение тела по окружности со скоростью v. При этом его ускорение, оставаясь перпендикулярным скорости в любой момент времени, направлено к центру окружности. Можно показать, что значение ускорения тела ac, которое в данном случае называется центростремительным, определяется по формуле
где R – радиус окружности. Следует отметить, что центростремительное ускорение меняет только направление вектора скорости, не влияя на его величину; ускорение ac направлено по радиусу окружности к ее центру.
Пример. Определение первой космической скорости.
Любое тело, движущееся по круговой орбите вокруг Земли, должно иметь ускорение ac = v2/R, направленное к центру нашей планеты.
Поскольку на тело в этом случае действует только сила земного притяжения (т. е. сила тяжести), то можно записать
где gc – ускорение свободного падения – 9,8 м/с2.
Тогда vc = qR.
Если считать, что R≈ 6500 км (расстояние до центра Земли), то вычисление первой космической скорости дает значение vc=8 км/c. Если разделить длину орбиты на скорость спутника, то получим время одного оборота спутника вокруг Земли. Длина орбиты низколетящего спутника близка к длине экватора Земли t = 40 000 км/8 км/c = 5000 c = 83 мин
Для того чтобы вывести ракету за пределы действия земного притяжения, т. е. направить ее к другим планетам, необходимо сообщить ей начальную скорость 11,2 км/с, которая носит название второй космической скорости.
Впервые эти расчеты провел Исаак Ньютон еще примерно в 1660 г.
Динамика занимается изучением общих законов взаимодействия материальных тел. Широкий класс явлений удается описать или объяснить на основе законов движения И. Ньютона.
Первый закон Ньютона
Будучи предоставлено самому себе (при отсутствии результирующей внешней силы), тело сохраняет состояние покоя или равномерного движения с равным нулю ускорением.
В математической форме это утверждение имеет вид: a = 0, если F = 0 (F – результирующая внешняя сила).
Второй закон Ньютона
Действующая на тело результирующая сила равна произведению массы тела на его ускорение:
Третий закон Ньютона
При любом взаимодействии двух тел сила, с которой первое тело воздействует на второе, равна по величине и направлена противоположно силе, с которой второе тело воздействует на первое:
Все три закона движения справедливы только при условии, что наблюдатель находится в инерциальной системе отсчета. Определение Ньютона для инерциальной системы отсчета: это любая система, которая покоится или движется равномерно и прямолинейно по отношению к неподвижным звездам.
Определение: импульсом (количеством движения) тела p называется произведение массы тела на его скорость:
Закон сохранения импульса
В отсутствие внешних сил сумма импульсов системы частиц (тел) остается неизменной.
При столкновении двух частиц, имеющих массы mA и mB, закон сохранения импульса записывается так:
или
где vA и vB – скорости частиц до соударения, а v'A и v'B – их скорости после соударения.
Другой вариант: две частицы первоначально покоятся, т. е. vA = vB = 0. Затем между ними происходит взаимодействие (например, из одной частицы выскакивает упругая пружина и расталкивает частицы). Закон сохранения импульса показывает, что после взаимодействия мы должны получить
где знак «минус» означает, что векторы параллельны, но направлены в противоположные стороны. Отсюда следует, что
где v'A и vB – абсолютные величины векторов скорости после взаимодействия.
Тогда любую неизвестную массу mB можно найти, приведя ее во взаимодействие с известной массой mA с помощью пружины, находящейся между ними, и измеряя отношение скоростей после взаимодействия. Масса частицы (тела), определенная таким образом, называется инертной массой. Закон сохранения импульса позволяет определить инертную массу тела.
Закон всемирного тяготения
Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m1 и m2, записывается следующим образом:
где r—расстояние между телами, G = 6,67 × 10-11 Н × м2/кг2 – гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на ее поверхности).
Гравитационная постоянная является мировой константой, ее определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. Зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.
Следствия закона всемирного тяготения
Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.
Первый закон Кеплера
Все планеты обращаются по эллиптическим орбитам, в фокусе которых находится Солнце.
Эллипс обладает несколькими характерными геометрическими свойствами. Это замкнутая кривая линия, сумма расстояний от любой точки которой до двух фиксированных точек (фокусов) остается постоянной. Другое свойство: луч света или звуковая волна (прямые лучи), вышедшие из одного фокуса эллипса, обязательно попадают в результате отражения во второй фокус. На этом принципе основано устройство «шепчущей галереи», какую иногда можно обнаружить в музеях – у такой галереи стены имеют форму эллипса. Два человека, стоящих в различных фокусах, расположенных даже на большом расстоянии, могут свободно разговаривать друг с другом шепотом, причем остальные посетители не услышат ни одного слова.
Второй закон Кеплера
Прямая, соединяющая Солнце и какую-либо планету, при вращении планеты вокруг Солнца за равные промежутки времени описывает одинаковую площадь.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.