Анатолий Дружинин - Как сделать двигатель лучше. Новые поршневые кольца Страница 6
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Автор: Анатолий Дружинин
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: -
- Страниц: 8
- Добавлено: 2019-01-29 11:09:42
Анатолий Дружинин - Как сделать двигатель лучше. Новые поршневые кольца краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Анатолий Дружинин - Как сделать двигатель лучше. Новые поршневые кольца» бесплатно полную версию:В книге представлена интегральная конструкция ЦПГ, в которой предусмотрены новые компрессионные и маслосъемные поршневые кольца, спроектированные с учетом газодинамических, термодинамических и гидравлических условий, в которых они работают. Обоснована ущербность ГОСТ 621—87, ГОСТ Р 53843—2010 (Кольца поршневые). Созданы условия практического применения воды в рабочих процессах ДВС, а также замещения четырехтактных двигателей более эффективными двухтактными.
Анатолий Дружинин - Как сделать двигатель лучше. Новые поршневые кольца читать онлайн бесплатно
В результате, вместо непонятного диапазона разброса размеров «рекомендаций» высоты поршневого кольца, появились «четкие» указания отечественных стандартов. Конструкторам уже не требовалось тратить время на какие-то расчеты высоты уплотнительного кольца, тем самым с них, а также со всех «генеральных» и «главных» снималась ответственность за некачественную продукцию.
Например, действующий ГОСТ 621—87 для диаметров цилиндров 88 мм и 130 мм «определил» размер высоты уплотнительных колец для обоих 2,0 мм. Непостижимо! Неужели при разработке столь ответственного документа, как технический стандарт, было непонятно, что от заданного размера диаметра цилиндра, равного внешнему диаметру поршневого кольца, зависят все остальные геометрические характеристики кольца?
Как можно игнорировать огромные рабочие давления в цилиндрах двигателя, достигающие 20 МПа (200 кг/см2) и активно влияющие на свободные поверхности подвижного поршневого кольца? В этих экстремальных условиях каждая тысячная доля миллиметра размеров высоты уплотнительного кольца и его радиальной толщины, трансформируется в килограммы силы, отражаясь на работоспособности поршневого кольца и, в конечном итоге, на технико-экономических и экологических показателях двигателя. Почему все так произошло подробно описано в публикациях автора.
Для очередного доказательства уже не единожды опубликованного и запатентованного объективного факта, приведем расчет уплотнительного (компрессионного) поршневого кольца, виртуального двигателя, близкого к желаемой конструкции автору, который мог быть использован для отечественных моделей АвтоВАЗа.
§3. Практические решения из теоретических выводов
Сравнивая два двигателя одного назначения КАМАЗ и МЕРСЕДЕС, автору – профессиональному технологу – мотористу, интуитивно (иногда доверяя конструкторам), был ближе МЕРСЕДЕС. Конечно, не авторитет фирмы здесь имел значение, а прагматизм, подтверждаемый многими годами поиска причин низкой эффективности изделия, проект которого технологи реализуют в металле. Очевидно, не стоит убеждать специалистов – проектантов в необходимости трудных поисков более простой конструкции, которая в полном объеме выполняла бы поставленные перед ней задачи.
Пожалуй, основное преимущество немецкого двигателя, по сравнению с конкурирующими двигателями ООО «КАМАЗ» и ЯМЗ ТМЗ ОАО «Автодизель», является размер его цилиндра 128 мм. Кажется разница небольшая, всего 8 мм, но с учетом огромных рабочих давлений, мощность увеличивается существенно, поэтому конкуренту было позволительно предусмотреть всего 6 цилиндров, со всеми вытекающими отсюда положительными последствиями.
Логически рассуждая, можно было бы порекомендовать отечественным грузовикам класса КАМАЗ и ЯМЗ использовать диаметр цилиндра 130 мм. Кстати, подобную поршневую группу с диаметром цилиндра 130 мм, изготавливает та же фирма ОАО «Костромской завод МОТОРДЕТАЛЬ», только для тракторных двигателей. Понятно, это мероприятие может быть реализовано только при условии принципиальных изменений конструкции поршневых устройств, следуя предлагаемых принципиальных изменений.
Итак, вернемся к расчету уплотнительного (компрессионного) поршневого кольца, которое могло быть использовано для отечественных моделей АвтоВАЗа. Рассматривая стратегию проектирования подобных двигателей, интересно было познакомиться с особенностями двигателей Формулы – 1. При оборотах двигателя 18 000… 22 500 об/мин и более, двигатель развивает мощность свыше 750 л. с., имея диаметр цилиндра 98 мм, ход поршня 39,7 мм, расход топлива порядка 60 л на 100 км.
Вполне очевидно, что скопировать для наших двигателей из ряда АвтоВАЗа, мало что возможно, но стратегию проектирования, учитывая высочайший класс мастерства привлеченных механиков и мотористов Формулы – 1, следует принять во внимание. В настоящее время имеем двигатели ВАЗ с диаметрами цилиндров 76…82 мм, трех- и четырехцилиндровые.
Закончим прерванный расчет влияния газодинамики на работу компрессионного кольца двигателя ВАЗ-2190, представленный выше, но уже для виртуального двигателя с желаемыми исходными данными.
Исходя из проявившейся тенденции наших исследований, можно считать целесообразным, использование для двигателей семейства ВАЗ максимально возможного размера цилиндра. Автор – технолог, интуитивно предполагает, что наиболее предпочтительным может быть взят за основу для дальнейших расчетов – диаметр цилиндра 90 мм. Вторым, очень важным для дальнейших расчетов является величина максимального рабочего давления, которую перенесем из предыдущего расчета компрессионного кольца двигателя ВАЗ – 2190, то есть 8 МПа, а для наших расчетов удобнее оперировать 80 кг/см2.
Итак, нам известен размер внешнего диаметра уплотнительного поршневого кольца. Посмотрим, какой размер внутреннего диаметра «рекомендует» нам ГОСТ Р 53843—2010, «предлагая» радиальную толщину кольца 3,8+0,1—0,15 мм. Следовательно, внутренний диаметр поршневого кольца будет равен 90,0 – 3,8 = 86,2 мм. Причем высоту кольца ГОСТ предлагает взять 2,0 мм. Очень изящное колечко! Очевидно, не стоит доказывать, что разработчики проигнорировали вторую, основную задачу компрессионного кольца – передавать тепло от перегретой головки поршня охлаждаемому цилиндру.
Решить эту задачу таким «облегченным» поршневым кольцом просто проблематично, так как была потеряна масса передающего элемента, т. е. поршневого кольца. Следует напомнить, что по причине неудовлетворительного теплообмена между поршнем и цилиндром, автором была обоснована нецелесообразность использования стандартных, применяемых в настоящее время поршневых трапециевидных компрессионных колец (например, на всех моделях двигателей КАМАЗ) [2].
Тем не менее, «трапециевидные» поршневые компрессионные кольца продолжает изготавливать производитель комплектов цилиндропоршневой группы «КОСТРОМА – МОТОРДЕТАЛЬ», оснащая двигатели КАМАЗ, ЯМЗ и многие другие. Придется, уже в который раз, доказывать абсолютную аксиому, изображенную на рис. 2, эта конструкция ничем не напоминает поршневое уплотнительное кольцо и элемент конструкции, который, кроме всего прочего, должен обеспечивать наилучшие условия теплоотвода от перегретой головки поршня охлаждаемому цилиндру.
Причем, сам инициатор «скручивающихся», «клинообразных», а по нашему ГОСТу «трапециевидных» поршневых уплотнительных колец, доходчиво объяснял, что «скручивающиеся» кольца получаются в результате того, что «…главные оси инерции образовавшегося (после выточки, скоса, фаски) несиметричного сечения кольца становятся не параллельными (и соответственно), неперпендикулярными к образующей рабочей поверхности, т. е. располагаются наклонно.
Если такое кольцо сжимают до рабочего размера, то оно не остается плоским в своей первоначальной плоскости, а принимает тарельчатую форму так, что нижняя кромка выступает несколько сильнее наружу, и только она приходит в соприкосновение с рабочей поверхностью цилиндра (фиг. 328)» [5]. В данном случае, к большому сожалению, практика подтвердила выводы ученого и с этим можно согласиться, ибо многократно превосходящим над «механикой» газодинамическим силам, без сомнения возможно изменить положение компрессионного кольца в поршневой канавке. Правда, сразу возникает вопрос, а нам «это» надо?
Рис. 2. Компрессионное кольцо с фаской на верхнем торце в динамике: 1 – цилиндр; 2 – поршень; 3 – поршневое кольцо
Имея определенный опыт и, не соглашаясь с предложениями ГОСТа, проведем расчеты, согласно нашим теоретическим посылам и нашей интуиции, примем размер радиальной толщины поршневого компрессионного кольца равным 4,0 мм. Согласно газодинамической схеме (рис. 1), для того, чтобы исключить отрицательное влияние газодинамики на работу поршневого компрессионного кольца, следует уравнять осевую газодинамическую силу Fо, действующую на верхний торец кольца, с радиальной газодинамической силой Fрад, прижимающей рабочую поверхность поршневого кольца к стенке цилиндра.
При этом следует учесть силу собственной упругости кольца, которая прижимает рабочую поверхность поршневого кольца к стенке цилиндра Fпр.
Для того, чтобы сбалансировать газодинамическую и механическую системы и обеспечить нормальную работоспособность компрессионного (уплотнительного) поршневого кольца, следует выполнить предлагаемое равенство: Fо = Fрад + Fпр.
Для размера диаметра цилиндра 92 мм ГОСТ предлагает принять «минимальную упругость (в ленте) кольца 14,20 Н (1,45 кгс). Этот параметр, для сравнения, в технических условиях на верхнее поршневое компрессионное кольцо двигателя КАМАЗ (диаметр цилиндра 120 мм) задан в пределах 2,3…3,1 кгс. Так как, в кинематической системе «цилиндр – поршневое кольцо – поршень» произошли и происходят принципиальные изменения по нашей воле, надеемся положительные, примем минимально необходимую величину, например, Fпр = 6,0 Н, то есть 0,6 кгс. Дальнейшие расчеты и соответствующие эксперименты должны подтвердить обоснованность такого назначения.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.