Жанна Ржевская - Медицинская биология: конспект лекций для вузов Страница 8

Тут можно читать бесплатно Жанна Ржевская - Медицинская биология: конспект лекций для вузов. Жанр: Научные и научно-популярные книги / Медицина, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Жанна Ржевская - Медицинская биология: конспект лекций для вузов

Жанна Ржевская - Медицинская биология: конспект лекций для вузов краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Жанна Ржевская - Медицинская биология: конспект лекций для вузов» бесплатно полную версию:
Используя данную книгу при подготовке к сдаче экзамена, студенты смогут в предельно сжатые сроки систематизировать и конкретизировать знания, приобретенные в процессе изучения этой дисциплины; сосредоточить свое внимание на основных понятиях, их признаках и особенностях; сформулировать примерную структуру (план) ответов на возможные экзаменационные вопросы.Материал приведен в соответствие с учебной программой курса «Медицинская биология».

Жанна Ржевская - Медицинская биология: конспект лекций для вузов читать онлайн бесплатно

Жанна Ржевская - Медицинская биология: конспект лекций для вузов - читать книгу онлайн бесплатно, автор Жанна Ржевская

Мембраны (за исключением мембран митохондрий и пластид) используются в процессах онтогенеза и могут превращаться друг в друга (течение мембран). Например, из эндоплазматического ретикулума образуются мембраны аппарата Гольджи, а последние служат материалом для регенерации плазмолеммы.

2. Белки и липиды в составе мембраны

Мембраны представляют собой двумерные жидкокристаллические растворы глобулярных белков в липидах. Структурную основу мембран составляют липиды, среди которых преобладают фосфолипиды (например, лецитин), а в мембранах пластид – гликолипиды. Белки в мембранах выполняют определенные функции: они являются, например, ферментами или транспортными белками. Кроме того, в состав мембран входят стерины (у животных а основном холестерин), гликопротеиды и некоторые неорганические соли.

3. Основная структура мембран

Основная структура всех мембран представляет собой два параллельных слоя липидов (бимолекулярный слой). Мембранные липиды – амфипатические молекулы, имеющие гидрофобную часть (углеводородные остатки жирных кислот и сфингозина) и гидрофильную часть (фосфат, холин, комамин, сахар и т. п.). Такие молекулы образуют на водной поверхности мономолекулярный слой. В водном окружении и в клетке образуются бимолекулярные слои: гидрофобные части различных молекул повернуты дальше от водного окружения, т. е. друг к другу, и удерживаются вместе сильными гидрофобными взаимодействиями и слабыми силами Ван-дер-Ваальса.

Таким образом, мембраны на обеих наружных поверхностях гидрофильны, а внутри – гидрофобны. Поскольку гидрофильные части молекул поглощают электроны, они видны в электронном микроскопе как два темных слоя.

4. Влияние температуры на мембрану

При низких температурах углеводородные остатки образуют подобие кристаллической решетки, и мембраны переходят в состояние геля. При физиологических температурах мембраны находятся в жидкокристаллическом состоянии: углеводородные остатки вращаются вокруг своей продольной оси и диффундируют в плоскости слоя; реже перескакивают из одного слоя в другой, не нарушая прочных гидрофобных связей.

Периферические белки мембран гидрофильны, так как на поверхности их глобулярной молекулы преобладают гидрофильные аминокислоты (с полярными группами). Они относительно непрочно связаны с гидрофильными поверхностями мембран в основном электростатическими силами, т. е. ионными связями.

Интегральные мембранные белки гидрофобны (по крайней мере частично), так как на поверхности их молекул находятся главным образом гидрофобные аминокислотные остатки.

Эти белки прочно укреплены в гидрофобной толще мембраны гидрофобными взаимодействиями, а гидрофильные части молекул выступают из мембраны наружу. Некоторые интегральные белки мембран способны, как и липидные молекулы, диффундировать в плоскости мембраны, другие встроены неподвижно.

Описанная жидкостно-мозаичная модель структуры мембраны (модель Сингера) заменила принятую ранее модель Даниели (без интегральных белков).

Благодаря гидрофобным взаимодействиям мембраны способны растягиваться (расти) при включении новых молекул, а в случае разрыва образовавшиеся края могут снова смыкаться.

Мембраны полупроницаемы; они должны обладать мельчайшими порами, через которые диффундируют вода и другие небольшие гидрофильные молекулы. Вероятно, для этого используются внутренние гидрофильные области интегральных мембранных белков или отверстия между соприкасающимися интегральными белками (туннельные белки).

Вопрос 19. Плазматическая мембрана

1. Характеристика плазмолемм

Плазмолемма, толщина которой около 8 нм, выполняет роль барьера для диффузии веществ из клетки; это существенно и для растительных клеток, так как клеточная стенка, как правило, проницаема. Встроенные в мембрану транспортные молекулы осуществляют перенос определенных веществ. Мембранные ферменты принимают лишь ограниченное участие в метаболизме. У растений плазмолемма участвует в обмене компонентов клеточной стенки, в нервных клетках – в проведении импульсов.

При клеточном делении дочерние клетки получают плазмолемму от материнской клетки. При росте плазмолеммы (связанном с делением и ростом клеток) и при ее регенерации она образуется из пузырьков Гольджи (течение мембран).

Плазматическая мембрана животных клеток покрыта снаружи полисахаридным слоем толщиной от 10 до 20 нм – гликокаликсом. Разветвленные остатки полисахаридов ковалентно связаны с белками и сфингозинсодержащими липидами. Полисахариды состоят главным образом из галактозы, маннозы, фукозы, N-ацетилгалактозамина, N-ацетилглюкозамина и (в концевых положениях) остатков сиаловой кислоты. Сиаловыми кислотами называют N-гликозил– и N-ацетилнейраминовые кислоты; нейраминовая кислота – это циклический конденсат маннозы и пирувата.

Из компонентов гликокаликса хорошо изучен гликопротеид гликофорин в мембранах эритроцитов. Он состоит на 60 % из углеводов и несет (подобно другим гликопротеидам и гликолипидам плазматических мембран животных клеток) специфические антигены групп крови, а также участки, связывающие различные вирусы и лектины.

Карбоксильный конец полипептидной цепи выступает из мембраны с ее внутренней стороны, а с наружной стороны находится аминный конец с многочисленными сильно разветвленными боковыми цепями полисахаридов.

2. Отличие плазматической мембраны в прокариотических клетках

Плазматическая мембрана прокариотических клеток отличается тем, что содержит в качестве интегральных белков переносчики электронов и ферменты дыхательной цепи и образует разного рода выпячивания. Некоторые выпячивания осуществляют дыхание, другие – фотосинтез и дыхание. Мезосомы бактерий представляют собой пластинчатые, трубчатые или везикулярные тельца, лежащие в карманах мембраны. Внутреннее пространство мезосом частично сообщается с внеклеточной средой. Мезосомы образуются в результате сложного складывания и слияния впяченных участков мембраны. Их функция неизвестна. Сходные структуры описаны у синезеленых водорослей и в клетках грибов (хотя последние относятся к эукариотам).

Вопрос 20. Эндоплазматический ретикулум (ЭР)

1. Характеристика ЭР

Трубчатые или уплотненные цистерны ЭР пронизывают всю цитоплазму и окружают клеточное ядро, образуя ядерную оболочку. Пузыревидные расширения достигают 100 нм в диаметре. Многие или даже все цистерны связаны между собой и с ядерной оболочкой, а их внутреннее пространство сообщается с перинуклеарным пространством. У растений трубчатые цистерны проходят сквозь клеточную стенку в соседние клетки (десмотубулы в десмосомах).

Цистерны нельзя выделить целиком, так как при гомогенизации они разрушаются до микросом – фрагментов величиной с рибосому. Биохимический анализ ЭР проводят чаще всего на препаратах микросом.

Мембраны цистерн имеют толщину около 6 нм. Составляющие их липиды – главным образом глицерофосфатиды (90–95 %), в частности лецитин (55 %).

2. Гранулярный ЭР

Гранулярный (шероховатый) ЭР густо усеян полисомами, а гладкий (агранулярный) ЭР, состоящий в основном из трубчатых элементов, не связан с ними. Плотные слои цистерн гранулярного ЭР – так называемая эргастоплазма – окрашиваются основными красителями благодаря высокому содержанию нуклеиновых кислот, поэтому скопления этих цистерн видны в световой микроскоп, особенно в клетках, секретирующих белки (в слюнных железах и поджелудочной железе).

В гранулярном ЭР происходит синтез определенных белков. Рибосомы, прикрепленные своими большими субчастицами к мембране, проталкивают вновь синтезируемые полипептидные цепи в цистерны, откуда белки выводятся из клетки, чаще всего с помощью трубчатых цистерн гладкого ЭР.

3. Гладкий ЭР

В гладком ЭР протекают различные этапы обмена углеводов, жирных кислот, жиров, терпеноидов и других веществ. Прежде всего это центр синтеза липидов и мембранных стероидов (холестерола) и тем самым начальный пункт течения мембран, т. е. образования и регенерации всей системы эндомембран и плазматической мембраны. В мышечных клетках ЭР, называемый здесь саркоплазматическим ретикулумом, обслуживает двигательную функцию.

В быстро растущих животных клетках (эмбриональных, раковых) в цитоплазме и в клеточном ядре встречаются кольчатые мембраны, сходные по структуре с ядерной оболочкой, – короткие и плоские изолированные фрагменты двойной мембраны с порами.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.